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Preface

This is the first book dedicated to uniting research related to speech and speaker recognition
based on the recent advances in large margin and kernel methods. The first part of the book
presents theoretical and practical foundations of large margin and kernel methods, from
Support Vector Machines to large margin methods for structured learning. The second part
of the book is dedicated to acoustic modeling of continuous speech recognizers, where the
grounds for practical large margin sequence learning are set. The third part introduces large
margin methods for discriminative language modeling. The last part of the book is dedicated
to the application of keyword spotting, speaker verification and spectral clustering.

The book is an important reference to researchers and practitioners in the field of modern
speech and speaker recognition. The purpose of the book is twofold: first, to set the theoretical
foundation of large margin and kernel methods relevant to the speech recognition domain;
second, to propose a practical guide on implementation of these methods to the speech
recognition domain. The reader is presumed to have basic knowledge of large margin and
kernel methods and of basic algorithms in speech and speaker recognition.

Joseph Keshet
Martigny, Switzerland

Samy Bengio
Mountain View, CA, USA



Part I

Foundations

Au tomatic Speech and Speaker R ecognition: Large Margin and Ker n el Methods Edited by Joseph Keshet 
and Samy Bengio © 2009 John Wiley & Sons, Ltd. ISBN: 978-0-470-69683-5



1

Introduction

Samy Bengio and Joseph Keshet

One of the most natural communication tools used by humans is their voice. It is hence natural
that a lot of research has been devoted to analyzing and understanding human uttered speech
for various applications. The most obvious one is automatic speech recognition, where the
goal is to transcribe a recorded speech utterance into its corresponding sequence of words.
Other applications include speaker recognition, where the goal is to determine either the
claimed identity of the speaker (verification) or who is speaking (identification), and speaker
segmentation or diarization, where the goal is to segment an acoustic sequence in terms of
the underlying speakers (such as during a dialog).

Although an enormous amount of research has been devoted to speech processing, there
appears to be some form of local optimum in terms of the fundamental tools used to approach
these problems. The aim of this book is to introduce the speech researcher community to
radically different approaches based on more recent kernel based machine learning methods.
In this introduction, we first briefly review the predominant speech processing approach,
based on hidden Markov models, as well as its known problems; we then introduce the most
well known kernel based approach, the Support Vector Machine (SVM), and finally outline
the various contributions of this book.

1.1 The Traditional Approach to Speech Processing

Most speech processing problems, including speech recognition, speaker verification, speaker
segmentation, etc., proceed with basically the same general approach, which is described here
in the context of speech recognition, as this is the field that has attracted most of the research
in the last 40 years. The approach is based on the following statistical framework.

A sequence of acoustic feature vectors is extracted from a spoken utterance by a front-end
signal processor. We denote the sequence of acoustic feature vectors by x̄= (x1, x2, . . . , xT ),

Au tomatic Speech and Speaker R ecognition: Large Margin and Ker n el Methods Edited by Joseph Keshet 
and Samy Bengio © 2009 John Wiley & Sons, Ltd. ISBN: 978-0-470-69683-5



4 AUTOMATIC SPEECH AND SPEAKER RECOGNITION

where xt ∈ X and X ⊂ R
d is the domain of the acoustic vectors. Each vector is a compact

representation of the short-time spectrum. Typically, each vector covers a period of 10 ms
and there are approximately T = 300 acoustic vectors in a 10 word utterance. The spoken
utterance consists of a sequence of words v̄ = (v1, . . . , vN). Each of the words belongs to
a fixed and known vocabulary V , that is, vi ∈ V . The task of the speech recognizer is to
predict the most probable word sequence v̄′ given the acoustic signal x̄. Speech recognition
is formulated as a Maximum a Posteriori (MAP) decoding problem as follows:

v̄′ = arg max
v̄
P (v̄|x̄)= arg max

v̄

p(x̄|v̄)P (v̄)
p(x̄)

, (1.1)

where we used Bayes’ rule to decompose the posterior probability in Equation (1.1). The
term p(x̄|v̄) is the probability of observing the acoustic vector sequence x̄ given a specified
word sequence v̄ and it is known as the acoustic model. The term P(v̄) is the probability of
observing a word sequence v̄ and it is known as the language model. The term p(x̄) can be
disregarded, since it is constant under the max operation.

The acoustic model is usually estimated by a Hidden Markov Model (HMM) (Rabiner and
Juang 1993), a kind of graphical model (Jordan 1999) that represents the joint probability of
an observed variable and a hidden (or latent) variable. In order to understand the acoustic
model, we now describe the basic HMM decoding process. By decoding we mean the
calculation of the arg maxv̄ in Equation (1.1). The process starts with an assumed word
sequence v̄. Each word in this sequence is converted into a sequence of basic spoken units
called phones1 using a pronunciation dictionary. Each phone is represented by a single HMM,
where the HMM is a probabilistic state machine typically composed of three states (which are
the hidden or latent variables) in a left-to-right topology. Assume that Q is the set of all states,
and let q̄ be a sequence of states, that is q̄ = (q1, q2, . . . , qT ), where it is assumed there
exists some latent random variable qt ∈Q for each frame xt of x̄. Wrapping up, the sequence
of words v̄ is converted into a sequence of phones p̄ using a pronunciation dictionary, and the
sequence of phones is converted to a sequence of states, with in general at least three states
per phone. The goal now is to find the most probable sequence of states.

Formally, the HMM is defined as a pair of random processes q̄ and x̄, where the following
first order Markov assumptions are made:

1. P(qt |q1, q2, . . . , qt−1)= P(qt |qt−1);

2. p(xt |x1, . . . , xt−1, xt+1, . . . , xT , q1, . . . , qT )= p(xt |qt ).
The HMM is a generative model and can be thought of as a generator of acoustic vector
sequences. During each time unit (frame), the model can change a state with probability
P(qt |qt−1), also known as the transition probability. Then, at every time step, an acoustic
vector is emitted with probability p(xt |qt ), sometimes referred to as the emission probability.
In practice the sequence of states is not observable; hence the model is called hidden. The
probability of the state sequence q̄ given the observation sequence x̄ can be found using
Bayes’ rule as follows:

P(q̄|x̄)= p(x̄, q̄)
p(x̄)

,

1A phone is a consonant or vowel speech sound. A phoneme is any equivalent set of phones which leaves a word
meaning invariant (Allen 2005).
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where the joint probability of a vector sequence x̄ and a state sequence q̄ is calculated simply
as a product of the transition probabilities and the output probabilities:

p(x̄, q̄)= P(q0)

T∏
t=1

P(qt |qt−1) p(xt |qt ), (1.2)

where we assumed that q0 is constrained to be a non-emitting initial state. The emission
density distributions p(xt |qt) are often estimated using diagonal covariance Gaussian
Mixture Models (GMMs) for each state qt , which model the density of a d-dimensional
vector x as follows:

p(x)=
∑
i

wiN (x; µi , σ i ), (1.3)

where wi ∈ R is positive with
∑
i wi = 1, and N (·; µ, σ ) is a Gaussian with mean µi ∈ R

d

and standard deviation σ i ∈R
d . Given the HMM parameters in the form of the transition

probability and emission probability (as GMMs), the problem of finding the most probable
state sequence is solved by maximizing p(x̄, q̄) over all possible state sequences using the
Viterbi algorithm (Rabiner and Juang 1993).

In the training phase, the model parameters are estimated. Assume one has access to a
training set of m examples Ttrain = {(x̄i , v̄i )}mi=1. Training of the acoustic model and the
language model can be done in two separate steps. The acoustic model parameters include the
transition probabilities and the emission probabilities, and they are estimated by a procedure
known as the Baum–Welch algorithm (Baum et al. 1970), which is a special case of the
Expectation-Maximization (EM) algorithm, when applied to HMMs. This algorithm provides
a very efficient procedure to estimate these probabilities iteratively. The parameters of the
HMMs are chosen to maximize the probability of the acoustic vector sequence p(x̄) given
a virtual HMM composed as the concatenation of the phone HMMs that correspond to
the underlying sequence of words v̄. The Baum–Welch algorithm monotonically converges
in polynomial time (with respect to the number of states and the length of the acoustic
sequences) to local stationary points of the likelihood function.

Language models are used to estimate the probability of a given sequence of words, P(v̄).
The language model is often estimated by n-grams (Manning and Schutze 1999), where the
probability of a sequence of N words (v̄1, v̄2, . . . , v̄N ) is estimated as follows:

p(v̄)≈
∏
t

p(vt |vt−1, vt−2, . . . , vt−N), (1.4)

where each term can be estimated on a large corpus of written documents by simply
counting the occurrences of each n-gram. Various smoothing and back-off strategies have
been developed in the case of large n where most n-grams would be poorly estimated even
using very large text corpora.

1.2 Potential Problems of the Probabilistic Approach

Although most state-of-the-art approaches to speech recognition are based on the use of
HMMs and GMMs, also called Continuous Density HMMs (CD-HMMs), they have several
drawbacks, some of which we discuss hereafter.
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• Consider the logarithmic form of Equation (1.2),

log p(x̄, q̄)= log P(q0)+
T∑
t=1

log P(qt |qt−1)+
T∑
t=1

log p(xt |qt ). (1.5)

There is a known structural problem when mixing densities p(xt |qt) and probabilities
P(qt |qt−1): the global likelihood is mostly influenced by the emission distributions and
almost not at all by the transition probabilities, hence temporal aspects are poorly taken
into account (Bourlard et al. 1996; Young 1996). This happens mainly because the
variance of densities of the emission distribution depends on d , the actual dimension
of the acoustic features: the higher d , the higher the expected variance of p(x̄|q̄), while
the variance of the transition distributions mainly depend on the number of states of
the HMM. In practice, one can observe a ratio of about 100 between these variances;
hence when selecting the best sequence of words for a given acoustic sequence, only
the emission distributions are taken into account. Although the latter may well be very
well estimated using GMMs, they do not take into account most temporal dependencies
between them (which are supposed to be modeled by transitions).

• While the EM algorithm is very well known and efficiently implemented for HMMs, it
can only converge to local optima, and hence optimization may greatly vary according
to initial parameter settings. For CD-HMMs the Gaussian means and variances are
often initialized using K-Means, which is itself also known to be very sensitive to
initialization.

• Not only is EM known to be prone to local optimal, it is basically used to maximize the
likelihood of the observed acoustic sequence, in the context of the expected sequence
of words. Note however that the performance of most speech recognizers is estimated
using other measures than the likelihood. In general, one is interested in minimizing
the number of errors in the generated word sequence. This is often done by computing
the Levenshtein distance between the expected and the obtained word sequences, and
is often known as the word error rate. There might be a significant difference between
the best HMM models according to the maximum likelihood criterion and the word
error rate criterion.

Hence, throughout the years, various alternatives have been proposed. One line of research
has been centered around proposing more discriminative training algorithms for HMMs. That
includes Maximum Mutual Information Estimation (MMIE) (Bahl et al. 1986), Minimum
Classification Error (MCE) (Juang and Katagiri 1992), Minimum Phone Error (MPE) and
Minimum Word Error (MWE) (Povey and Woodland 2002). All these approaches, although
proposing better training criteria, still suffer from most of the drawbacks described earlier
(local minima, useless transitions).

The last 15 years of research in the machine learning community has welcomed the
introduction of so-called large margin and kernel approaches, of which the SVM is its best
known example. An important role of this book is to show how these recent efforts from
the machine learning community can be used to improve research in the speech processing
domain. Hence, the next section is devoted to a brief introduction to SVMs.
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M
argin

Figure 1.1 Illustration of the notion of margin.

1.3 Support Vector Machines for Binary Classification

The most well known kernel based machine learning approach is the SVM (Vapnik 1998).
While it was not developed in particular for speech processing, most of the chapters in this
book propose kernel methods that are in one way or another inspired by the SVM.

Let us assume we are given a training set of m examples Ttrain = {(xi, yi)}mi=1 where xi ∈
R
d is a d-dimensional input vector and yi ∈ {−1, 1} is the target class. The simplest binary

classifier one can think of is the linear classifier, where we are looking for parameters (w ∈
R
d , b ∈ R) such that

ŷ(x)= sign(w · x+ b). (1.6)

When the training set is said to be linearly separable, there is potentially an infinite number
of solutions (w ∈R

d , b ∈ R) that satisfy (1.6). Hence, the SVM approach looks for the one
that maximizes the margin between the two classes, where the margin can be defined as the
sum of the smallest distances between the separating hyper-plane and points of each class.
This concept is illustrated in Figure 1.1.

This can be expressed by the following optimization problem:

min
w,b

1

2
‖w‖2 (1.7)

subject to ∀i yi(w · xi + b)≥ 1.

While this is difficult to solve, its following dual formulation is computationally more
efficient:

max
α

m∑
i=1

αi − 1

2

m∑
i=1

n∑
j=1

yiyjαiαjxi · xj (1.8)

subject to


∀i αi ≥ 0
m∑
i=1

αiyi = 0.
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One problem with this formulation is that if the problem is not linearly separable, there
might be no solution to it. Hence one can relax the constraints by allowing errors with an
additional hyper-parameterC that controls the trade-off between maximizing the margin and
minimizing the number of training errors (Cortes and Vapnik 1995), as follows:

min
w,b

1

2
‖w‖2 + C

∑
i

ξi (1.9)

subject to

{∀i yi(w · xi + b)≥ 1− ξi
∀i ξi ≥ 0

which has dual formulation

max
α

m∑
i=1

αi − 1

2

m∑
i=1

n∑
j=1

yiyjαiαjxi · xj (1.10)

subject to


∀i 0≤ αi ≤ C
m∑
i=1

αiyi = 0.

In order to look for nonlinear solutions, one can easily replace x by some nonlinear function
φ(x). It is interesting to note that x only appears in dot products in (1.10). It has thus been
proposed to replace all occurrences of φ(xi ) · φ(xj ) by some kernel function k(xi , xj ). As
long as k(·, ·) lives in a reproducing kernel Hilbert space (RKHS), one can guarantee that
there exists some function φ(·) such that

k(xi , xj )= φ(xi ) · φ(xj ).
Thus, even if φ(x) projects x in a very high (possibly infinite) dimensional space, k(xi , xj )
can still be efficiently computed.

Problem (1.10) can be solved using off-the-shelf quadratic optimization tools. Note
however that the underlying computational complexity is at least quadratic in the number of
training examples, which can often be a serious limit for most speech processing applications.

After solving (1.10), the resulting SVM solution takes the form of

ŷ(x)= sign

( m∑
i=1

yiαik(xi , x)+ b
)

(1.11)

where most αi are zero except those corresponding to examples in the margin or misclassi-
fied, often called support vectors (hence the name of SVMs).

1.4 Outline

The book has four parts. The first part, Foundations, covers important aspects of extending
the binary SVM to speech and speaker recognition applications. Chapter 2 provides a detailed
review of efficient and practical solutions to large scale convex optimization problems one
encounters when using large margin and kernel methods with the enormous datasets used
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in speech applications. Chapter 3 presents an extension of the binary SVM to multiclass,
hierarchical and categorical classification. Specifically, the chapter presents a more complex
setting in which the possible labels or categories are many and organized.

The second part, Acoustic Modeling, deals with large margin and kernel method algo-
rithms for sequence prediction required for acoustic modeling. Chapter 4 presents a large
margin algorithm for forced alignment of a phoneme sequence to a corresponding speech
signal, that is, proper positioning of a sequence of phonemes in relation to a corresponding
continuous speech signal. Chapter 5 describes a kernel wrapper for the task of phoneme
recognition, which is based on the Gaussian kernel. This chapter also presents a kernel
based iterative algorithm aimed at minimizing the Levenshtein distance between the predicted
phoneme sequence and the true one. Chapter 6 reviews the use of dynamic kernels for
acoustic models and especially describes the Augmented Statistical Models, resulting
from the generative kernel, a generalization of the Fisher kernel. Chapter 7 investigates a
framework for large margin parameter estimation for continuous-density HMMs.

The third part of the book is devoted to Language Modeling. Chapter 8 reviews past
and present work on discriminative training of language models, and focuses on three key
issues: training data, learning algorithms, features. Chapter 9 describes different large margin
algorithms for the application of part-of-speech tagging. Chapter 10 presents a proposal for
large vocabulary continuous speech recognition, which is solely based on large margin and
kernel methods, incorporating the acoustic models described in Part II and the discriminative
language models.

The last part is dedicated to Applications. Chapter 11 covers a discriminative keyword
spotting algorithm, based on a large margin approach, which aims at maximizing the area
under the receiver operating characteristic (ROC) curve, the most common measure to
evaluate keyword spotters. Chapter 12 surveys recent work on the use of kernel approaches
to text-independent speaker verification. Finally, Chapter 13 introduces the main concepts
and algorithms together with recent advances in learning a similarity matrix from data.
The techniques in the chapter are illustrated on the blind one-microphone speech separation
problem, by casting the problem as one of segmentation of the spectrogram.
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2

Theory and Practice of Support
Vector Machines Optimization

Shai Shalev-Shwartz and Nathan Srebo

Support Vector Machines (SVMs), and more generally L2-regularized linear predictors, are
effective and popular discriminative learning tools. The task of learning an SVM is cast
as an optimization problem of jointly minimizing an empirical loss term and an L2-norm
regularization term. Solving the optimization problem is a challenging task particularly
when the number of training examples is large. In this chapter we describe two stochastic
approaches for solving the optimization problem posed by L2 linear predictors, focusing
on cases in which the number of training examples is very large. In particular, we review
a stochastic gradient descent approach and a stochastic coordinate dual ascent method. Our
goal is to provide optimization procedures that are both efficient and easy to implement.

2.1 Introduction

In this chapter, we consider the computational problem of training SVMs and related
linear prediction models. We focus on computational methods appropriate for training using
very large data sets. To set up the stage for understanding the relative merits of different
computational approaches, we begin in Section 2.2 with a brief introduction to SVMs, and
more generally, toL2-regularized linear prediction. In theory, the optimization problem posed
by SVM is a convex optimization problem that can be solved using off-the-shelf optimizers
which find an extremely accurate solution. In practice, such solvers are only appropriate for
training using fairly small data sets. In Section 2.3, we discuss the optimization problem
from a machine learning perspective, emphasizing that our true goal is to find a predictor
with low generalization error. Based on this observation, we argue that we do not need to
find an extremely accurate solution to the optimization problem. We present methods that

Au tomatic Speech and Speaker R ecognition: Large Margin and Ker n el Methods Edited by Joseph Keshet 
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find approximate solutions while their runtime increases only moderately with the size of
the data set. The runtime dependence on the optimization accuracy is worse than that of
traditional methods, but, as discussed above, from a machine learning perspective this should
not pose a major problem. In particular, in Section 2.4 we describe a stochastic gradient
descent approach and in Section 2.5 we present a stochastic coordinate dual ascent method.
We chose these two approaches as they are both efficient and easy to implement.

Notation We denote scalars with lower case letters (e.g. w and α), and vectors with bold
face letters (e.g. w and α). The transpose of a column vector w is denoted by wT. The ith
element of a vector w is denoted bywi . The inner product between two d-dimensional vectors
x and w is denoted by 〈x, w〉 :=∑d

i=1 xiwi . The set of real numbers is denoted by R. For
any k ≥ 1, the set of integers {1, . . . , k} is denoted by [k]. The L2 norm of a vector x is
denoted by ‖x‖ := √〈x, x〉. The expected value of a random variable Z is denoted by EZ.
When considering the expectation Eh(z) of a function h applied to the random variable Z,
we sometimes omit Z from the notation and use the shorthand Eh.

2.2 SVM and L2-regularized Linear Prediction

The goal of SVM training is to learn a linear predictor w which can be used to predict the
label y ∈ Y of a given instance x ∈ X . We say that w is a linear predictor if the prediction
hw(x) ∈ Y made based on the instance x depends on w linearly.

2.2.1 Binary Classification and the Traditional SVM

In the simplest case of binary classification, the prediction is based on a fixed feature map φ,
mapping each instance to a vector φ(x). A label y ∈ {±1} is then predicted according to the
sign of 〈w, φ(x)〉, that is, hw(x)= sign〈w, φ(x)〉 ∈ {±1}. Typically, a bias term b ∈ R is also
allowed, with hw,b(x)= sign(〈w, φ(x)〉 + b). For the time being we do not allow a bias, and
defer its introduction to Section 2.2.5.

In order to learn w, we use a training set (x1, y1), . . . , (xm, ym) of m labeled examples.
We then seek the predictor w minimizing the L2-regularized empirical loss:

f (w)= λ

2
‖w‖2 + 1

m

m∑
i=1

�(〈w, φ(xi )〉, yi),

where λ is a regularization trade-off parameter and �(z, y) is a loss function. In the standard
SVM formulation for binary classification, this is the hinge loss �(z, y)=max{0, 1− yz}.
Note that we did not directly refer to the prediction rule hw in the optimization objective
and that minimizing the loss �(〈w, φ(xi )〉, y) differs from simply minimizing the number of
prediction errors made by hw(x). Indeed in training time, which is the focus of the current
chapter, we are concerned mostly with this loss function rather than with the prediction
rule hw.

Our hope in using the SVM learning rule, arg minw f (w), is that we can find a predictor
w that both has low norm, and attains low empirical loss on the training samples. Minimizing
the empirical loss without any further constraints can easily lead to overfitting – that is,
finding a (complicated) predictor that has high overall error, but happens to have low error
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on the training data. Overfitting can be avoided by limiting the class of predictors allowed, in
our case to the class of low norm predictors. We actually do this indirectly, by including also
a norm term in the objective and thus preferring a low-norm predictor over other predictors
with lower training error but higher norm. Regularizing the norm of w ensures that if w attains
low average loss on a random training sample, it will also generalize and attain low expected
loss, and thus also low prediction error, over unseen examples (Schölkopf and Smola 2002).

2.2.2 More General Loss Functions

More generally, and especially when more complex labels are involved, we allow the
prediction to depend on multiple inner products with w. Formally, with H being a Hilbert
space in which w resides, we allow a fixed feature map� : x→Hk which maps each instance
into k vectors in H (when H is finite dimensional, we can think of �(x) as a matrix). Often
we have k = |Y|, with one feature vector for each candidate label, which we denote�(x, y).
In any case, prediction is based on the k inner products 〈w, φ(x)i〉. We use 〈w,�(x)〉 ∈ R

k

to denote the vector of these inner products. If we think of �(x) as a matrix, we have
〈w,�(x)〉 = wT�(x). We again have hw(x)= h(〈w,�(x)〉), where we now allow a more
general rule h : Rk→ Y . The optimization objective also has the same form as before:

f (w)= λ

2
‖w‖2 + 1

m

m∑
i=1

�(〈w,�(xi )〉, yi), (2.1)

except now the loss function � : Rk × Y→ R takes as input a vector of prediction values.
The exact form of the loss function can vary. However, we will require that the loss function
be convex in its first argument, 〈w,�(xi )〉, so that the optimization objective f (w) is convex
with respect to w.

2.2.3 Examples

Example 2.2.1 (Binary classification with the hinge loss) In the binary classification
problem mentioned before, Y = {+1,−1} and �(x) is a single vector (i.e. k = 1). The
prediction rule is h(z)= sign(z) and the loss is given by �(z, y)=max{0, 1− yz}. This is
the ‘standard’ soft-margin SVM formulation (except perhaps for the lack of a bias term).

Example 2.2.2 (Binary classification with the log-loss) Instead of the hinge loss, other
loss functions might be used with binary labels Y = {+1,−1}. A popular choice is the log-
loss given by: �(z, y)= log(1+ exp(−yz)). The prediction rule is as before.

Example 2.2.3 (Regression with the ε-insensitive loss) We now turn to regression prob-
lems over the reals, Y = R. The standard Support Vector Regression formulation still uses
a mapping � to a single vector φ(x) (i.e. k = 1), with a loss function given by �(z, y)=
max{0, |y − z| − ε}. The prediction rule simply follows h(z)= z.
Example 2.2.4 (Cost-sensitive multiclass categorization) In multi-class categorization
problems, Y is a finite discrete set of classes. This time, we use a mapping to k = |Y| feature
vectors, which we index using the possible labels: �(x)= (φ(x, y))y∈Y . This results in a
vector z= 〈w,�(x)〉 of prediction values indexed by Y . The label corresponding to the



14 AUTOMATIC SPEECH AND SPEAKER RECOGNITION

largest inner product is chosen:

h(z)= arg max
y∈Y

zy. (2.2)

The cost-sensitive loss function is given by

�(z, y)=max
y ′∈Y

δ(y ′, y)− zy + zy ′, (2.3)

where δ(y ′, y) is the cost of predicting y ′ instead of y.

Example 2.2.5 (Sequence prediction) Sequence prediction is similar to cost-sensitive
multi-class categorization, but the set of targets, Y , can be very large. For example, in
phoneme recognition tasks, X is the set of all speech utterances and Y is the set of all
phoneme sequences. Therefore, |Y| is exponential in the length of the sequence. Nevertheless,
as we show later, if the functions� and δ adhere to a specific structure then we can still solve
the resulting optimization problem efficiently. More specifically, if the optimization problem
given in the definition of the loss function (see Equation (2.3)) can be solved efficiently, then
the optimization problem required for training can be solved efficiently as well.

2.2.4 Kernels

One of the main benefits of SVMs is the ability to describe the feature mapping� implicitly,
by providing only a kernel function K specifying the inner product between feature vectors.
This can be done by considering the representer theorem (Kimeldorf and Wahba 1971),
which in our case can be stated as follows:

Theorem 2.2.6 Let w� be the minimizer of f (w) defined in Equation (2.1), then w� can be
written as

∑m
i=1

∑k
j=1 αi,jφ(xi )j for some set of coefficients αi,j ∈R.

Proof. LetC denote the span of the vectors {φ(xi )j : 1≤ i ≤m, 1≤ j ≤ k}. We can write
any vector, and in particular w�, as a sum w1 + w2 where w1 ∈ C while w2 is orthogonal
to C; Therefore, for all i, j we have 〈φ(xi )j , w2〉 = 0 and thus �(〈w�, φ(xi )〉, yi)=
�(〈w1, φ(xi )〉, yi). In addition, ‖w�‖2 = ‖w1‖2 + ‖w2‖2. Therefore, f (w�)− f (w1)=
(λ/2)‖w2‖2. The optimality of w� now implies that w2 must be the zero vector, which
concludes our proof. �

A consequence of the representer theorem is that we can limit our attention only to
weight vectors of the form w =∑m

i=1
∑k
j=1 αi,jφ(xi )j , parameterized by the coefficients

α = {αi,j }. For such vectors, we have

‖w‖2 =
∑
i,j

∑
i′,j ′

αi,j αi′,j ′k((xi, j), (xi′, j
′))

where k((xi, j), (xi′ , j ′))= 〈φ(xi)j , φ(xi′)j ′ 〉 and

〈�(x),w〉 =
∑
i′,j ′

αi′,j ′k(xi, (xi′, j
′)),
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where we denote k(xi, (xi′ , j ′))= (k((xi, 1), (xi′ , j ′)), . . . , k((xi, k), (xi′ , j ′)). We can
therefore write our optimization problem as a minimization problem over the coefficients
{αi,j }:

f (α)= 1

2

∑
i,j

∑
i′,j ′

αi,j αi′,j ′k((xi, j), (xi′, j
′))

+ 1

m

∑
i

�

(∑
i′,j ′

αi′,j ′k(xi, (xi′ , j
′)), yi

)
. (2.4)

This expression can be written much more compactly for the simpler case of k = 1 (i.e. a
single feature vector for each example). Let K be the m×m Gram matrix with Ki,j =
k(xi, xj ), then, for k = 1:

f (α)= λ

2
αTKα + 1

m
�((Kα)i, yi). (2.5)

The important advantage of writing the objective in terms of α, and optimizing over
this parameterization, is that the objective Equation (2.4) depends on the feature mapping
only through the inner products 〈φ(xi)j , φ(xi′)j ′ 〉. It is often easier to describe the inner
products by providing the function k((xi, j), (xi′ , j ′)), and this is enough for solving
the optimization problem, and indeed also for using the learned coefficients α to make
predictions. Furthermore, the optimization objective specified in Equation (2.4) does not
depend on the dimensionality of the feature mapping. We can therefore use a very high
dimensional, or even infinite dimensional, feature space H.

It should be emphasized that the optimization objective f (α) specified in Equation (2.4)
and Equation (2.5) is not the dual of our initial f (w). Rather this is a different way of
parameterizing our original problem arg minw f (w). (i.e. a different parameterization of
the primal). We discuss the dual problem (which is a different optimization problem) in
Section 2.5.1.

2.2.5 Incorporating a Bias Term

In many applications, the weight vector w is augmented with a bias term which is a scalar,
typically denoted as b. For binary classification, the prediction becomes sign(〈w, x〉 + b) and
the loss is accordingly defined as

�((w, b), (x, y))=max{0, 1− yi(〈w, xi〉 + b)}. (2.6)

The bias term often plays a crucial role in binary classification problems when the distribution
of the labels is uneven as is typically the case in text processing applications where the
negative examples vastly outnumber the positive ones. The algorithms we present below
assume that there is no learning of the bias term (namely, the bias term is known in advance).
We now briefly describe two different approaches to learning the bias term and underscore
the advantages and disadvantages of each approach.

The first approach is rather well known and its roots go back to early work on pattern
recognition (Duda and Hart 1973). This approach simply amounts to adding one more feature
to each feature vector φ(x, y) thus increasing the dimension by 1. The artificially added
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feature always take the same value. We assume without loss of generality that the value of
the constant feature is 1. Once the constant feature is added the rest of the algorithm remains
intact, thus the bias term is not explicitly introduced. Note however that by equating the
last component of w with b, the norm-penalty counterpart of f becomes ‖w‖2 + b2. The
disadvantage of this approach is thus that we solve a slightly different optimization problem.
On the other hand, an obvious advantage of this approach is that it requires no modifications
to the algorithm itself rather than a modest increase in the dimension.

In the second approach, we rewrite the optimization problem as

min
b∈R

(
min

w

λ

2
‖w‖2 + 1

m

m∑
i=1

�((w, b), (xi , yi))
)
.

Denote the expression inside the outer-most parentheses by g(b). Then, we can rewrite the
optimization problem as minb g(b). Since the function � is jointly convex with respect to w
and b, the function g(b) is a convex function (see Boyd and Vandenberghe 2004, page 87).
Therefore, a simple binary search for the value of b is guaranteed to find an ε close solution in
no more than O(log(1/ε)) evaluations of the function g(b). Each evaluation of the function
g(b) requires solving an SVM problem with a fixed bias term. Therefore, incorporating the
bias term increases the runtime by a multiplicative factor ofO(log(1/ε)).

2.3 Optimization Accuracy From a Machine Learning
Perspective

In the previous section, we phrased training as an optimization problem of finding a
minimizer of f (w). As long as the loss function �(z, y) is convex in z, the optimization
problems corresponding to training are convex optimization problems and can be solved
using standard approaches. Even if only kernel information is available rather than an explicit
feature mapping, we can still directly minimize the SVM objective using the formulation
given in Equation (2.4).

If the loss is differentiable then the problem is an unconstrained differentiable optimization
problem and can be solved using standard gradient-based descent methods (Nocedal and
Wright 2006). We might therefore sometimes choose to replace a non-differentiable loss
such as the hinge loss with a ‘smoothed’ approximation of the loss (e.g. rounding the non-
differentiable ‘corners’). Gradient-based methods can then be used (Chapelle 2007). This
yields a very simple and flexible approach for a wide variety of loss functions.

Alternatively, if the loss is piecewise linear, as is the case for the hinge loss used in
the standard SVM formulation, the optimization problem can be written as a quadratic
program (QP) (Schölkopf and Smola 2002) and a standard QP solver can be used (Boyd and
Vandenberghe 2004; Nocedal and Wright 2006). Although off-the-shelf QP solvers are only
appropriate for training using fairly small data sets, much effort has been directed toward
developing QP solvers specifically optimized for the standard SVM optimization problem.
Notable examples are SMO (Platt 1998), SVM-Light (Joachims 1998), and LibSVM (Fan
et al. 2005).

Viewing SVM training as a standard optimization problem and applying the methods
discussed above can be appropriate for mid-sized problems, involving thousands and possibly
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tens of thousands of examples. However, since the entire data set is processed at each iteration
of the above methods, the runtime of these methods increases, sometimes sharply, with the
size of the data set.

On the other hand, the high degree of optimization accuracy achieved by standard
optimization approaches might not be necessary in SVM training. The focus of traditional
optimization approaches is obtaining fast convergence to the optimum f (w∗)=minw f (w).
Typically linear, or even quadratic, convergence is guaranteed. That is, a solution with
f (w̃)≤ f (w∗)+ ε is obtained after O(log(1/ε)) or even O(log log(1/ε)) iterations. These
methods are therefore especially well suited in situations in which very accurate solutions
are necessary. As mentioned above, this might come at the expense of a very sharp runtime
dependence on the number of training examples or other problem parameters.

To understand how important optimization accuracy is from a machine learning per-
spective, it is important to remember that our true objective is not actually f (w). Our true
objective is the generalization error – the expected error of w on future, yet unseen, instances.
Of course, we cannot actually observe or calculate this objective at training time, and so we
use the average loss on the training examples as an estimator for this expected error. To
control the variance of the training loss as an estimator we also regularize the norm of w by
adding the term 1

2λ‖w‖2 to our objective, arriving at our optimization objective f (w).
Although we cannot minimize the generalization error directly, it is still insightful to

understand runtime in terms of the resulting guarantee on this true objective. That is, using
some optimization method, what is the required runtime to get low generalization error?
To do so, it is useful to consider a rough decomposition of the generalization error into three
terms (this decomposition can be made more precise – see Shalev-Shwartz and Srebro (2008)
for further details):

• The approximation error This is the best expected error possible with a low-norm
linear predictor (using the feature mapping or kernel we committed to). That is, this
is the best we could hope for, even if we could magically minimize the expected error
directly, but still restricted ourselves to low-norm linear predictors.

• The estimation error This is the additional error introduced by the fact that we are
using only a finite data set. That is, we are using the average training loss, which is
only an empirical estimate of the expected loss.

• Optimization error This is the additional error due to the inaccuracy of the optimiza-
tion. That is, this is the difference in generalization error between the true optimum
w∗ = arg minw f (w) and the solution w̃ found by the optimization algorithm, which
might have an objective value which is ε worse than w∗.

Based on this error decomposition of the generalization error, the only component that can
be controlled by the optimization algorithm is the optimization error, which is of the same
order as the optimization accuracy, ε. The estimation error, on the other hand, is controlled
by the data set size – as the number m of training examples increases, our estimate is more
accurate, and the estimation error decreases as O(1/

√
m). The combined contribution to our

true objective, the generalization error, is then O(ε + 1/
√
m). It is therefore reasonable to

expect to keep the optimization accuracy ε on roughly the same order as 1/
√
m. In particular,

having a runtime dependence on 1/ε, as opposed to at most log(1/ε) in the methods discussed
above, can be preferable to even a linear runtime dependence on the data set size.
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Therefore, as an alternative to the traditional optimization methods, in this chapter we
consider simple methods that take advantage of the optimization objective being an average
over many examples and the fact that even rough accuracy can be enough for us. We present
methods where the runtime of each iteration does not necessarily increase with the size of
the data set. The overall runtime of the method either does not at all increase with the size of
the data set, or increases only moderately (in particular, when formulation Equation (2.4) is
used, and the number of optimization variables depends on the number of training examples).
The runtime dependence on the optimization accuracy will indeed be much worse than the
logarithmic dependence of traditional approaches, but, as discussed above, this dependence
is generally preferable to dependence on the data set size, especially for very large data sets.
Indeed, the methods we present are well-suited for problems with even millions of training
examples, for which traditional methods are not applicable.

2.4 Stochastic Gradient Descent

In this section we present a stochastic gradient descent (SGD) approach for training SVMs.
SGD is an extremely simple optimization procedure. But despite its simplicity, SGD can
be an excellent choice for SVM training. It is in fact state-of-the-art for training large scale
SVM when the feature vectors are given explicitly, especially when the feature vectors are
sparse (Bottou 2008; Shalev-Shwartz et al. 2007).

Each SGD step is extremely cheap computationally, with a computational cost propor-
tional to the size of the (sparse) representation of a single training feature vector. The flip
side is that the solutions converges rather slowly to the true optimal solution, and, as we show
below, the number of SGD iterations required to get within ε of optimal scales as O(1/ε).
However, as discussed in the previous section, such a ‘slow’ convergence rate is tolerable,
and is far out-weighed by the low computational cost per iteration.

Like many other methods, SGD is an iterative method where in each iteration we calculate
an updated weight vector wt . At iteration t , we randomly choose a training example (xi , yi),
with i = i(t) ∈ [m] uniformly and independently selected at each iteration. We then consider
the estimate of the optimization objective f (w) based on the single training example (xi , yi):

ft (w)= λ

2
‖w‖2 + �(〈w,�(xi )〉, yi). (2.7)

Since i is chosen uniformly at random from [m], we have that Eft (·)= f (·). We then update
w using the sub-gradient of ft (w). More specifically, we set wt+1 = wt − ηt∇t , where∇t is a
sub-gradient of ft at wt and ηt is a scalar (the learning rate). A sub-gradient is a generalization
of the more familiar gradient that is also applicable to non-differentiable functions. In
Section 2.4.1 we formally define this notion and show how to easily calculate a sub-gradient
for several loss functions. Following Shalev-Shwartz et al. (2007), we set ηt = (1/λ (t + 1)).
Additionally, since the gradient of the function (λ/2)‖w‖2 at wt is λwt , we can rewrite
∇t = λwt + vt , where vt is a sub-gradient of �(〈w,�(xi)〉, yi) at wt . Therefore, the update
of the SGD procedure can be written as

wt+1 =
(

1− 1

t

)
wt − 1

(t + 1) λ
vt . (2.8)
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Unraveling the recursive definition of wt+1 we can also rewrite wt+1 as

wt+1 =−1

λ

t∑
t ′=1

1

t ′ + 1

t+1∏
j=t ′+2

(
1− 1

j

)
v′t =−

1

λ

t∑
t ′=1

1

t ′ + 1

t+1∏
j=t ′+2

j − 1

j
vt ′

= − 1

λ (t + 1)

t∑
t ′=1

vt ′ . (2.9)

In fact, in the pseudo-code for the SGD procedure in Figure 2.1, we use the representation
θt =∑t−1

t ′=1 vt ′ , from which we can calculate wt = (1/λt)θt . This is done to emphasize that
the current weight vector is an accumulation of sub-gradients. More importantly, as explained
below, this also enables a more efficient implementation when the features�(x) are sparse.

Input: A sequence of loss functions �(〈w,�(x1)〉, y1), . . . , �(〈w,�(xm)〉, ym)
Regularization parameter λ

Initialize: θ1 = 0

Do:

Choose i ∈ [m] uniformly at random

Calculate sub-gradient vt of �(〈w,�(xi )〉, yi) at wt = 1

λ t
θ t (see Section 2.4.1)

Update: θ t+1 = θ t − vt

UNTIL stopping condition is met (see Section 2.4.2)

Figure 2.1 A stochastic gradient descent procedure for solving SVM.

Using kernels So far we have described the algorithm assuming we have a direct access
to the features �(x) and it is practical to represent the weight vector w explicitly. We now
turn to the case in which the features are described implicitly through a kernel function. In
this case we cannot represent the weight vector w explicitly. The important observation here
is that sub-gradients vt , and so also wt , can always be expressed as a linear combination of
feature vectors.

We begin with considering the simpler case in which each example is represented with
a single feature vector φ(x) as in the standard SVM. In this case, it is easy to verify that
any sub-gradient of �(〈w, φ(xi )〉, yi) with respect to w can be written as vt = gtφ(xi ), where
gt ∈ R is a sub-gradient of �(z, yi) with respect to z, calculated at z= 〈w, φ(xi)〉. Following
Equation (2.9), we see that our weight vector wt is a linear combination of examples chosen
in the iterations so far:

wt =− 1

λt

t−1∑
t ′=1

gt ′φ(xi(t ′)), (2.10)

where xi(t ) is the example chosen at iteration t . We can therefore represent the weight vector
by keeping track of the coefficients gt associated with each example. That is, we represent

wt =− 1

λt

m∑
i=1

αiφ(xi ), (2.11)
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where α is a (sparse) vector with αi =∑
t |i(t )=i gt . Following the discussion in Section 2.2.4,

we can now calculate the norm of wt and inner products 〈wt , φ(xi)〉 using only kernel
evaluations, and implement the SGD method without referring to the actual feature vectors
φ(xi ).

Next, we consider the slightly more cumbersome case where k > 1, i.e. each example is
represented by multiple feature vectors, perhaps one feature vector for each possible label. In
this case a sub-gradient vt of �(〈w,�(xi )〉, yi) can be written as

vt =
k∑
j=1

gt,jφ(xi )j , (2.12)

where gt is a sub-gradient of �(z, yi) with respect to z at z= 〈w,�(xi )〉 ∈ R
k . Again, each

sub-gradient is spanned by feature vectors, and we have

wt =− 1

λt

m∑
i=1

k∑
j=1

αi,jφ(xi)j (2.13)

with αi,j =∑
t |i(t )=i gt,j . The required norm and inner products can, as before, be calculated

using the kernel, and a kernalized implementation of the SGD method is possible. Note that
at each iteration, only a single set of coefficients αi(t),j is changed.

Sequence prediction The SGD procedure is applicable for solving sequence prediction
problems (see Example 2.2.5). To see this, we note that to efficiently calculate the sub-
gradient vt we need only find the label ŷ = arg maxy δ(y, yi)− zyi + zy (see the table in
Section 2.4.1). Since this problem is equivalent to the problem of evaluating the loss function
we conclude that SGD can be implemented as long as we can efficiently calculate the loss
function.

Sparse feature vectors The observation that the sub-gradients are spanned by feature
vectors is also very beneficial when the feature vectors are given explicitly, and are very
sparse. That is, each vector φ(xi ) has only a few non-zero entries. This would then mean that
the sub-gradients vt are sparse. Examining the SGD pseudo-code in Figure 2.1, we see that
the required operations are inner products of (the potentially dense) θt with the sparse vectors
φ(xi )i , and adding the sparse vector vt into θt . The total number of operations required
for performing one iteration of SGD is therefore O(d), where d is the number of non-zero
elements in �(xi ).

2.4.1 Sub-gradient Calculus

Given a convex function g(w), a sub-gradient of g at w0 is a vector v that satisfies

∀w, g(w)− g(w0)≥ 〈v,w− w0〉.
Two properties of sub-gradients are given below.

1. If g(w) is differentiable at w0, then the gradient of g at w0 is the unique sub-gradient
of g at w0.
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2. If g(w)=maxi gi(w) for r differentiable functions g1, . . . , gr , and j = arg maxi
gi (w0), then the gradient of gj at w0 is a sub-gradient of g at w0.

Based on the above two properties, we now explicitly show how to calculate a sub-gradient
for several loss functions. In the following table, we use the notation z := 〈wt ,�(xi )〉.

Loss function Sub-gradient

�(z, yi )=max{0, 1− yiz} vt =
{
−yiφ(xi ) if yiz < 1

0 otherwise

�(z, yi )= log(1+ e−yiz) vt =− yi

1+ eyiz φ(xi )

�(z, yi )=max{0, |yi − z| − ε} vt =


φ(xi ) if z − yi > ε
−φ(xi ) if yi − z > ε
0 otherwise

�(z, yi )=max
y∈Y

δ(y, yi)− zyi + zy vt = φ(xi , ŷ)− φ(xi , yi )
where ŷ = arg max

y
δ(y, yi )− zyi + zy

2.4.2 Rate of Convergence and Stopping Criteria

We have so far discussed the iterations of the SGD approach, but did not discuss an
appropriate stopping condition. In order to do so, we first present a guarantee on the number
of iterations required in order to achieve a certain optimization accuracy. We then present
a stopping condition based on this guarantee, as well as a more ad hoc stopping condition
based on validation.

We say that an optimization method finds an ε-accurate solution w̃ if f (w̃)≤minw f (w)
+ ε. The following theorem, adapted from Shalev-Shwartz et al. (2007), bounds the number
of iterations required by the SGD method to obtain an ε-accurate solution.

Theorem 2.4.1 Assume that the SGD algorithm runs T iterations on a training set
{(xi , yi)}mi=1. Assume that the loss function �(〈w,�(xi )〉, yi) is convex with respect to
w and that for all t , ‖vt‖ ≤ R. Let s be an integer s.t. (T /s) is also in integer and
let r1, . . . , rs be a sequence of indices where for each i, ri is randomly picked from
{(T /s)(i − 1)+ 1, . . . , (T /s) i}. Then, with probability of at least 1− e−s , exists j ∈ [s]
such that

f (wrj ) ≤ f (w�)+
2sR2(1+ log(T ))

λT
.

The guarantee of Theorem 2.4.1 motivates an a priori stopping condition, namely stop-
ping after a predetermined number of iterations which ensures the desired accuracy:
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A priori stopping condition Let ε > 0 be a desired accuracy parameter and δ ∈ (0, 1) be a
desired confidence parameter. We can set T and s in advance so that

2sR2(1+ log(T ))

λT
≤ ε and e−s ≤ δ. (2.14)

Theorem 2.4.1 tells us that with probability of at least 1− δ, the SGD procedure will find an
ε-accurate solution.

Stopping condition using validation This a priori stopping condition is based on the
guarantee of Theorem 2.4.1, which is a worst-case guarantee. Although when the stopping
condition 2.14 is satisfied, we are guaranteed (with high probability) to have an ε-accurate
solution, it is certainly possible that we will reach this desired level of accuracy much sooner.
Moreover, as discussed in Section 2.3, we should be less concerned about the optimization
accuracy, and more concerned about the expected prediction error on future examples. This
motivates using a prediction error on a held-out validation set as a stopping guideline. That
is, set some training examples apart as a validation set and monitor the prediction error on
the validation set once in a while. For example, if we set 10k examples as a validation set and
calculate the loss function on the validation set after each 10k iterations, the overall runtime
increases by a factor of 2. We can then terminate training when the loss on the validation set
stop decreasing (see also Bottou 2008).

Neither of the above stopping conditions is very satisfying. The a priori approach might
be too pessimistic, while the validation approach is rather time consuming and there
is no rigorous way of deciding when the validation error stopped decreasing. Although
the validation approach does often suffice, in the next section we present an alternative
optimization approach with a better stopping criterion.

2.5 Dual Decomposition Methods

In the previous section we described a simple SGD approach for solving the SVM
optimization problem. The main two advantages of the SGD procedure are its simplicity and
its efficiency. However, as we discussed, its biggest drawback is the lack of a good stopping
condition. Additionally, when using kernels, the computational cost of each SGD step does
scale with the number of training examples, diminishing its attractiveness (although it is still
competitive with other approaches).

In this section we describe a method for solving the SVM training optimization problem
using the dual problem, which we will shortly introduce. Specifically, we consider a simple
dual decomposition approach. Decomposition methods such as SMO (Platt 1998) and
SVM-Light (Joachims 1998) switch to the dual representation of the SVM optimization
problem, and follow a coordinate ascent optimization approach for the dual problem. Dual
decomposition methods have two advantages. First, as we show below, the duality gap upper
bounds the suboptimality of our intermediate solution. As a result, we have a clear stopping
criterion. Second, in dual methods, we sometime remove vectors from the support set (that is,
the set of examples for which αi is non-zero, and so they participate in the resulting weight
vector) and therefore we may find more sparse solutions. This property is desired when
working with nonlinear kernels. The disadvantage of traditional decomposition methods,
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such as SMO and SVM-Light, is that their running time is sometimes much slower than
SGD methods, especially when working with linear kernels. The procedure we describe
in this section uses randomization for selecting a working example. Experimentally, the
performance of this method is often comparable to that of SGD methods.

For simplicity, our focus in this section is on the problem of binary classification with the
hinge loss, that is, the primal optimization problem is to minimize the following objective
function:

f (w)= λ

2
‖w‖2 + 1

m

m∑
i=1

max{0, 1− yi〈w, φ(xi )〉}.

Dual decomposition approaches were devised for more complex problems. We refer the
reader to Crammer and Singer (2001), Globerson et al. (2007), Shalev-Shwartz and Singer
(2006), Taskar et al. (2003) and Tsochantaridis et al. (2004).

2.5.1 Duality

We have so far studied direct minimization of the objective f (w). We refer to this problem,
arg minw f (w), as the primal problem.1 We can rewrite the primal problem as the following
constrained optimization problem:

min
w,ξ

λ

2
‖w‖2 + 1

m

m∑
i=1

ξi s.t. ξi ≥ 0, 1− yi〈w, φ(xi )〉 ≤ ξi .

Introducing Lagrange multipliers on the constraints (see, e.g., Boyd and Vandenberghe 2004;
Schölkopf and Smola 2002), one can derive the dual problem:

arg max
α∈[0,1]m D(α) (2.15)

where the dual objective is given by

D(α)= 1

m

( m∑
i=1

αi − 1

2 λ m

m∑
i=1

m∑
j=1

αiαj yiyj 〈φ(xi ), φ(xj )〉
)
. (2.16)

Duality theory tells us that for any weight vector w and a feasible dual vector α ∈ [0, 1]m we
have D(α)≤ f (w) and equality holds if and only if w is the optimizer of the primal problem
and α is an optimizer of the dual problem. Furthermore, if α is an optimizer of the dual
problem then the following vector is an optimizer of the primal problem:

w= 1

λ m

m∑
i=1

αiyiφ(xi ). (2.17)

The quantity f (w)−D(α) is called the duality gap and it upper bounds the suboptimality of
w since

f (w)− f (w�) ≤ f (w)−D(α).
1It should be emphasized that the problem arg minα f (α) given in Equation (2.4) is not a dual problem but rather

a different parametrization of the primal problem.
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One advantage of the dual problem is that it can be easily decomposed. That is, we
can choose a subset of the dual variables and optimize D(α) over these variables while
keeping the rest of the dual variables intact. In the most simple approach, at each iteration we
optimize D(α) over a single element of α. The optimum of D(α) over a single variable has
a closed form solution and therefore the cost of each iteration is small. Similar approaches
were suggested by numerous authors (see, e.g., Censor and Zenios 1997; Hildreth 1957;
Mangasarian and Musicant 1999). We now describe the resulting algorithm.

Initially, we set α1 = 0. At iteration t , we define

wt = 1

λ m

m∑
j=1

αtj yj φ(xj ).

Choose i ∈ [m] uniformly at random and let

w\it = wt − 1

λ m
αti yiφ(xi )=

1

λ m

∑
j �=i

αtj yj φ(xj ).

We can rewrite the dual objective function as follows:

D(α)= 1

m

m∑
j=1

αj − λ

2

∥∥∥∥w\it +
1

λm
αiyiφ(xi)

∥∥∥∥2

= αi

m

(
1− yi〈w\it , φ(xi )〉

)
− ‖φ(xi )‖

2

2λm2 α2
i + C,

where C does not depend on αi . Optimizing D(α) with respect to αi over the domain [0, 1]
gives the update rule

αt+1
i =max

{
0,min

{
1,
λm(1− yi〈w\it , φ(xi)〉)

‖φ(xi )‖2

}}
.

A pseudo-code of the resulting algorithm is given in Figure 2.2. Note that we now have a
clear stopping condition, f (wt )−D(αt ) ≤ ε, which follows directly from the fact that the
duality gap upper bounds the suboptimality,

f (wt )− f (w�) ≤ f (wt )−D(αt ).

This stands in contrast to the SGD approach in which we did not have such a clear stopping
condition.

Nonlinear kernels We can rewrite the update rule for αt+1
i using the Gram matrix K

defined in Section 2.2.4 as follows. First, we note that

λ m yi〈w\it , φ(xi )〉 =
∑
j �=i

Ki,j α
t
j = (K αt )i −Ki,i αti .

Additionally, we have ‖φ(xi )‖2 =Ki,i . Therefore,

αt+1
i =max

{
0,min

{
1,
λm− (K αt )i −Ki,i αti

Ki,i

}}
.
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Input: A sequence of examples (x1, y1), . . . , (xm, ym)

Regularization parameter λ

Desired accuracy ε

Initialize: α1 = (0, . . . , 0)

Do:

Set wt = 1

λ m

∑m
j=1 α

t
j yj φ(xj )

Choose i ∈ [m] uniformly at random

Set w\it = wt − 1

λ m
αti yi φ(xi )

Update: αt+1
i =max

{
0,min

{
1,
λm(1− yi〈w\it , φ(xi )〉)

‖φ(xi )‖2

}}
and for j �= i, αt+1

j = αtj
Until:

f (wt )−D(αt )≤ ε

Figure 2.2 A dual coordinate ascend algorithm for solving SVM.

This update implies that αt+1
i will become zero if w\it attains zero hinge loss on the ith

example. That is, the update encourages sparse dual solutions. Compare this with the SGD
approach, in which whenever we set αi to a non-zero value it remains non-zero in all
subsequent iterations.

Convergence Several authors (e.g. Hsieh et al. 2008; Mangasarian and Musicant 1999)
proved linear convergence rate for dual coordinate ascent. The basic technique is to adapt
the linear convergence of coordinate ascent that was established by Luo and Tseng (1992).
This convergence result tells us that after an unspecified number of iterations, the algorithm
converges very fast to the optimal solution.

2.6 Summary

In this chapter we described two approaches for SVM optimization: stochastic gradient
descent and stochastic dual coordinate ascent. These methods are efficient, easy to imple-
ment, and are adequate for SVM training in the presence of large data sets. The major
advantage of the stochastic gradient descent approach is its simplicity – we show how it can
be implemented for solving various L2-regularized problems such as binary classification
and sequence prediction. The advantages of the dual coordinate ascent approach are that it
has a natural stopping criterion and it encourages sparse dual solutions.



26 AUTOMATIC SPEECH AND SPEAKER RECOGNITION

References

Bottou L 2008 Stochastic gradient descent examples. http://leon.bottou.org/projects/sgd (last accessed
4 December 2008).

Boyd S and Vandenberghe L 2004 Convex Optimization. Cambridge University Press.
Censor Y and Zenios S 1997 Parallel Optimization: Theory, Algorithms, and Applications. Oxford

University Press, New York, NY.
Chapelle O 2007 Training a support vector machine in the primal. Neural Computation 19(5), 1155–

1178.
Crammer K and Singer Y 2001 On the algorithmic implementation of multiclass kernel-based vector

machines. Journal of Machine Learning Research 2, 265–292.
Duda RO and Hart PE 1973 Pattern Classification and Scene Analysis. John Wiley & Sons.
Fan RE, Chen PH and Lin CJ 2005 Working set selection using second order information for training

SVM. Journal of Machine Learning Research 6, 1889–1918.
Globerson A, Koo T, Carreras X and Collins M 2007 Exponentiated gradient algorithms for log-

linear structured prediction. Proceedings of the 24th International Conference on Machine Learning,
Oregon State University, OR, June 20–24, 2007.

Hildreth C 1957 A quadratic programming procedure. Naval Research Logistics Quarterly 4, 79–85.
Erratum, ibidem, p. 361.

Hsieh C, Chang K, Lin C, Keerthi S and Sundararajan S 2008 A dual coordinate descent method for
large-scale linear SVM. Proceedings of the 25th International Conference on Machine Learning,
Helsinki, Finland, July 5–9, 2008.

Joachims T 1998 Making large-scale support vector machine learning practical. Advances in Kernel
Methods—Support Vector Learning (eds. B Schölkopf, C Burges and A Smola). MIT Press.

Kimeldorf G and Wahba G 1971 Some results on tchebycheffian spline functions. Journal of
Mathematical Analysis and Applications 33, 82–95.

Luo Z and Tseng P 1992 On the convergence of the coordinate descent method for convex differentiable
minimization. Journal of Optimization Theory and Applications 72, 7–35.

Mangasarian O and Musicant D 1999 Successive overrelaxation for support vector machines. IEEE
Transactions on Neural Networks 10.

Nocedal J and Wright S 2006 Numerical Optimization, 2nd edn. Springer.
Platt JC 1998 Fast training of Support Vector Machines using sequential minimal optimization.

Advances in Kernel Methods–Support Vector Learning (eds. B Schölkopf, C Burges and A Smola).
MIT Press.

Schölkopf B and Smola AJ 2002 Learning with Kernels: Support Vector Machines, Regularization,
Optimization and Beyond. MIT Press.

Shalev-Shwartz S and Singer Y 2006 Efficient learning of label ranking by soft projections onto
polyhedra. Journal of Machine Learning Research 7 (July), 1567–1599.

Shalev-Shwartz S, Singer Y and Srebro N 2007 Pegasos: Primal estimated sub-gradient solver for SVM.
Proceedings of the 24th International Conference on Machine Learning, Oregon State University,
OR, June 20–24, 2007.

Shalev-Shwartz S and Srebro N 2008 Svm optimization: Inverse dependence on training set size.
Proceedings of the 25th International Conference on Machine Learning, Helsinki, Finland,
July 5–9, 2008.

Taskar B, Guestrin C and Koller D 2003 Max-margin Markov networks. Advances in Neural
Information Processing Systems 17.

Tsochantaridis I, Hofmann T, Joachims T and Altun Y 2004 Support vector machine learning for
interdependent and structured output spaces. Proceedings of the 21st International Conference on
Machine Learning, Banff, Alberta, Canada, July 4–8, 2004.



3

From Binary Classification to
Categorial Prediction

Koby Crammer

The problem of binary classification is fundamental in many ways but it still does not describe
the real-world well. We present a more complex setting in which the possible labels or
categories are many and organized. This setup makes the learning task more difficult, not
only qualitatively, but also quantitatively as well. This is because the learner has to take
into consideration that some mistakes are more acceptable than others. In the next section
we present a general framework for multicategorization problems and exemplify it with the
task of automatic speech recognition. In Section 3.2 we present one linear model for the
problem and in Section 3.3 we discuss loss functions for such problems. Next, in Section 3.5
and Section 3.6 we present two general algorithms for such problems, an extension for the
Perceptron algorithm (Rosenblatt 1958) and one based on quadratic programming in the spirit
of Passive–Aggressive (PA) algorithms (Crammer et al. 2006). We present a related batch
formulation which extends support vectors machines (SVMs) (Cristianini and Shawe-Taylor
2000; Schölkopf and Smola 2002). We conclude with a discussion about related work and
other approaches in Section 3.8.

3.1 Multi-category Problems

Let us start with a general description and definition of multi-category problems using
automatic speed recognition (ASR) as an example. A common problem is to map acoustic
signals of speech utterances to phonemes, which are often organized in a tree (see Figure 3.1).
We like a way to define what category-predictions are preferable to others. Consider a
fragment of a signal which should be mapped to the phoneme /oy/ (as in /boy/). One
specification of a system is that it will predict correctly the correct phoneme, otherwise,

Au tomatic Speech and Speaker R ecognition: Large Margin and Ker n el Methods Edited by Joseph Keshet 
and Samy Bengio © 2009 John Wiley & Sons, Ltd. ISBN: 978-0-470-69683-5
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Figure 3.1 Hierarchical phonetic tree (reproduced by permission from Springer c© Dekel,
Keshet and Singer, An Online Algorithm for Hierarchical Phoneme Classification, Lecture
Notes in Computer Science vol. 3361/2005, Machine Learning for Multimodal Interaction.
Springer, Berlin/Heidelberg, 2005, pp. 146–158).

all the remaining categories are equally wrong. Another more involved specification is that
in the case of a mistake we prefer that the system will output a similar phoneme such as
/ow/ (as in /boat/) rather than an arbitrary phoneme. An even more complex preference
groups phonemes into logical sets. In this case, if the system is not sure of the exact vowel
we like the output to indicate that the phoneme is a vowel or even a center vowel.
This makes sense when the predictor is a single component of a large system and a later
component of the ASR system can correct some mistake or disambiguate between similar
alternatives.

We denote by C the set of all possible categories (phonemes in our example) and
describe and visualize preference between categories c ∈ C using directed acyclic graphs.
The elements of the categories set C correspond to the nodes of the graph. Each ordered
pair in the preference relation (c, d) ∈ y⊂ C × C translates into a directed edge c→ d of the
graph. No self loops in a graph represent reflexive relations and no loops of size two represent
anti-symmetry relations. We do not enforce transitivity (if there is a pass from node c to node
d then there is an edge between these two nodes). We refer to this type of preference as
semi-orders, the formal definition of which is now given.
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Definition 3.1.1 (Semi-order) Let C be a finite set. A semi-order π is a subset of the
product space C × C that its induced graph is a directed acyclic graph (DAG). Namely, for
all (a1, b1), (a2, b2), . . . , (at , bt ) ∈ π such that b1 = a2, b2 = a3, . . . , bt−1 = at we have
bt �= a1.

Semi-orders are less restricted than partial-orders. In both cases, we do require reflexivity
and any-symmetry; however, partial-orders further assume transitivity, while semi-orders
weaken transitivity and assume that no directed cycles exist. For example π = {(1, 2), (2, 3)}
is a semi-order but not a partial-order, since the axiom of transitivity implies that (1, 3) ∈ π .

The learning algorithm observes a set of examples {(xi , yi )}mi=1, each example (x, y) being
constituted from a pair of an instance and a target, where a bold face symbol y designates
a semi-order label rather than a simple label y. Each instance x is in an input space X . To
describe the target we define the following spaces. The set of all possible topics or categories
was denoted above by C and w.l.o.g. it is assumed to be C = {1, 2, . . . , k}. We denote by Y
the set of all semi-orders over C. Each instance is associated with a target label y taken from
the set of semi-orders Y over the topics C. Formally:

Y = {π : π ∈ C × C is a semi-order}.
The goal of the learning algorithm is to construct a mapping from the instance space to the
prediction space.

We define the prediction space Ŷ to be a k dimensional vector space R
k . Each prediction

ŷ ∈ Ŷ naturally induces a total-order. If the pth coordinate of the vector ŷ is greater than the
qth coordinate of ŷ we set the pair order (p, q) to belong to the total-order. Formally:

ŷ ∈ Ŷ = R
k �−→ {(p, q) : ŷp > ŷq}.

Ties are broken arbitrarily. We will abuse the notation and think of the prediction ŷ as the
total-ordering it induces, rather than a vector of k elements, and write (p, q) ∈ ŷ, which is
equivalent to ŷp > ŷq .

There is a many-to-many relation between the target space Y and the prediction space
Ŷ . A given prediction (k dimensional vector) corresponds to some total-order, which may
be consistent with many semi-orders (targets) by losing some of the order restrictions.
Vice versa, each semi-order (target) is consistent with many total-orders by adding more order
restrictions which can be represented with many predictions (k dimensional vectors).

Consider for example a simple prediction problem with three possible classes C =
{1, 2, 3}. First the prediction ŷ ∈R

3 such that ŷ= (10, 8, 6) is consistent with the total-
order {(1, 2), (1, 3), (2, 3)} (since ŷ1 > ŷ2 and ŷ2 > ŷ3), which is consistent with the three
semi-orders: y= {(1, 2), (1, 3), {(1, 2)} and {(1, 3)}. The other way around, the semi-order
y= {(1, 2), (1, 3)} does not specify which of categories 2 or 3 is preferable over the other.
There are two possible total-orders consistent with the semi-order y: either y ∪ {(2, 3)}where
2 is preferred over 3, or y ∪ {(3, 2)}. This illustrates that more than a single total-order may
be consistent with the same total-order. To illustrate the relation between total-orders and
predictions, we choose the first case and consider the total-order {(1, 2), (1, 3), (2, 3)}. We
note that every vector ŷ ∈ R

3 such that ŷ1 > ŷ2 and ŷ2 > ŷ3 is consistent with the chosen
total-order; hence, a one-to-many relation between semi-orders and predictions.

As a consequence, given a prediction ŷ regarding an instance x or the corresponding total-
order, there is no direct way to reconstruct the original target (semi-order) y associated with
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Figure 3.2 Three preference relations phonemes. (a) Organization of phonemes in two layers:
correct phoneme and others. (b) Organization of phonemes in layers. (c) Organization of
phonemes as a path from leaf to root, then all other phonemes.

the instance x. This gap is an inherent property of the model and, as we shall see, it is a
byproduct of the class of prediction functions. Last, we assume that the empty semi-order, in
which there are no order restrictions, is not a possible target, y = ∅ /∈ Y . This is because any
total-order is consistent with it and thus it does not challenge the learning algorithm.

A graphical illustration of the three possible preference relations is given in Figure 3.2.
The left panel (Figure 3.2(a)) demonstrates the first specification in which the correct
phoneme should be ranked above any other class. The induced graph consists of k − 1
pairs of the form (r, s) for a fixed value of r ∈ C and all values of s �= r . (For simplicity,
only four edges are shown.) Any total-order in which the category r ∈ C is ranked above all
other categories is consistent with this type of semi-order. The center panel (Figure 3.2(b))
demonstrates the second specification, in which phonemes are organized in layers. The top
layer consists of the correct phoneme /oy/, the second layer consists of the most similar
phonemes (all back-vowels, only two actually appear in the plot), the third layer consists of
all other vowels (only three appear) and the fourth layer consists of all other phonemes (only
three appear in the plot). There is an edge between any pair of phonemes from two consec-
utive layers. There are no order restrictions among categories from the same layer. In other
words, the set of categories is divided into four disjoint subsets, All categories belonging to
some subset are ranked above all the categories belonging to less preferred subsets.

Finally, the right panel (Figure 3.2(c)) illustrates the third preference specification as a
tree. The phonemes are located only in the leaves of the tree. The internal nodes of the tree
represent groups of categories. A father–child relation reflects specification. We add meta-
categories, to reflect the internal node of the tree. A phoneme category (leaf) is viewed as a
pass from the root to the corresponding node. This representation reflects the idea that some
mistakes are more preferable than others: a meta-category which is an ancestor of the target
is more acceptable than other categories or meta-categories.
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We remind the reader that the above examples are specific cases designed to illustrate the
power and flexibility of preference relations. Other choices may suit in other applications.
General preference over categories can be any DAG. DAGs can be used to represent
hierarchical ordering or specification of categories in a more complex structure. It should
be used according to the exact problem in hand.

3.2 Hypothesis Class

The class of linear functions presented in Chapter 1 has many of the desired properties
previewed there. To promote our hypothesis class we describe linear separators w using
the notation of multicategorization. We denote the two possible categories by C = {1, 2},
implement a linear separator w using two parameter vectors w1 = w and w2 =−w and define
the prediction function h : X → R

2 to be h(x)= ((w1 · x) , (w2 · x)). It is straightforward
to verify that the prediction of h is equivalent to the prediction of the linear separator
h(x)= (w · x). Since the first element of h(x) is larger than its second element, if and only
if, (w · x) > 0.

We use this interpretation and generalize the class of linear separators to multicatego-
rization problems as follows. Given a problem with k categories, we maintain a collection
W of k parameter vectors wr , one vector per category r . The weight vectors wr are also
called prototypes. Occasionally the notation is abused and the collection W is thought of as a
concatenation of the k-vectors w1, . . . , wk , that is W= (w1, . . . , wk). In this case the norm
of the collection W is defined as

‖W‖2 =
∑
r

‖wr‖2.

We define the hypothesis h parameterized by W to be

h (x)= ((w1 · x) , . . . , (wk · x)) ∈ R
k. (3.1)

We denote by hr(x)= (wr · x). The model composed of the hypothesis class and the
representation of input space is called Single-Instance Multi-Prototype. This is because the
representation of an instance is fixed along categories whereas there is a vector prototype per
category. There exist other models, such as the one presented in Chapter 9, which is popular
in structured prediction. We refer the reader to Concluding remarks for more information.

These hypotheses divide the Euclidean space into cones. The angle of a cone depends both
on the relative angle between pairs of two parameter vectors and on their norm. An illustration
of the decision boundary in the plane appears in Figure 3.3. Both plots in the figure show the
decision boundary induced by four prototype hypotheses. The colors code the four regions
for which each of the categories is ranked at the top. A similar decomposition of space occurs
when tracking categories ranked second, third and fourth. The left plot illustrates the decision
boundary for a prediction rule in which the norms of all prototypes are equal to each other.
The right-hand side plot shows the decision boundary for prototypes with different norms.
The length of the arrows in the plot is proportional to the norm of the prototype.
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Figure 3.3 An illustration of a prediction function composed of four linear functions. The
left plot shows the decision boundary for four linear functions with the same norm, whereas
the right plot shows the decision boundary for linear functions that do not have the same
norm.

3.3 Loss Functions

Let us consider a sample T = {
(xi , yi)

}m
i=1. Assume we are given two prediction functions

taken from the set of all prediction functions H = {(h1(x) . . . hk(x)) : hr(x)= (wr · x) for
wr ∈ R

n} and we want to determine which is preferred. The simplest method to compare two
hypotheses is to apply each of them to the sample T and compute the fraction of examples
in which each of the hyperplanes was wrong. The hypothesis which makes fewer mistakes
is the better. This may be well defined for binary classification problems, as a prediction
is either correct or wrong. However, in our context of multi-category problems, it may not
be enough as we need to quantize that some mistakes are more preferable than others. We
thus introduce the notion of a loss function, which takes two arguments, an hypothesis h and
a labeled example (x, y), and measures the quality of prediction by a single non-negative
number:

� : H× (X × Y)→R+. (3.2)

A hypothesis which suffers a zero loss on an example is said to predict the label perfectly.
A proper loss function should be defined in order to evaluate prediction functions. In the

problem of binary classification there is a single natural loss function, the zero-one loss which
indicates whether an error has occurred or not. The loss functions for multicategorization we
describe below reflect that some mistakes are more preferable than others by having a rich
range of more than two possible values (as used in binary classification). In general, the loss
functions described below are combinatorial in nature and count the number of subsets of the
target semi-order that are not consistent with the predicted total-order.

Although these combinatorial loss functions are natural to use, they suffer from two
drawbacks. First, they do not take into consideration the confidence information which is
part of the prediction. More precisely, they consider only the relation between the elements
of ŷ and their actual values. Thus if two hypotheses make an error when predicting a specific
example, but for one of them the difference between the elements of ŷ is much greater than
the other, their loss is equal. The other drawback of the combinatorial loss functions is their
discontinuity in the parameter vectors wr . Thus, when we cast the learning algorithms as
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an optimization problems the outcome is often not-convex and hard to solve. Thus, later, in
Section 3.4 we extend the notion of hinge loss (see e.g. Cristianini and Shawe-Taylor 2000;
Schölkopf and Smola 2002) to our more complex setting.

3.3.1 Combinatorial Loss Functions

Let us illustrate the variety of possible loss functions using a multi-class multi-label problem.
Targets are two-layer semi-orders, and predictions are total-ordering. Categories belonging
to the top-layer are relevant to the input instance, while the other categories, belonging to
the lower level, are not-relevant. In our example, assume that there are five categories (Y =
{1, 2, 3, 4, 5}) and the first two categories are ranked above the other three categories (y=
{(1, 3), (2, 3), (1, 4), (2, 4), (1, 5), (2, 5)}), and that some prediction ŷ induces the total-
ordering : (1, 3), (3, 4), (4, 2), (2, 5) ∈ ŷ. The loss functions we define below differ from
each other by the resolution used to measure the performance of the prediction. The most
high-level question we can ask is ‘Is the prediction perfect?’ In our example the answer is
negative since the pair (2, 3) ∈ y (2 is ranked above 3) is part of the semi-order whereas
its opposite (3, 2) ∈ ŷ is contained in the prediction. A basic low-level question we ask is
‘How many pairs of relevant–irrelevant categories are mismatched by the total-ordering?’
There are two such pairs (2, 3) and (2, 4). Unlike the previous question, which has only
two possible answers, this question has seven possible answers, |y| + 1. These loss functions
partition the set of predictions (total-orderings) differently, in accordance with the possible
values the loss function can attain. The first loss function favors perfect predictions over all
other predictions, whereas the second loss function differentiates non-perfect predictions.

We can further ask two other natural questions: ‘How many relevant categories are
ranked below some irrelevant category?’ (answer: one, category 2) and ‘How many irrelevant
categories are ranked above some relevant category?’ (answer: two, categories 3, 4). These
two loss functions are more detailed than the first loss function mentioned above, but less
detailed than the second loss function. In both cases the possible number of answers is larger
than 2 (number of possible answers for the first loss above) and less than 7 (number of
possible answers for the second loss above).

Let us now formulate all these loss functions and other additional functions in a unified
description. Let y be a semi-order over Y , and ŷ be a prediction. A loss function is
parameterized by a partition χ of the semi-order y into finite disjointed sets. Namely,⋃
χ∈χ χ = y and χp ∩ χq = ∅ for all p �= q . The loss function is defined as

I
(
y; ŷ, χ

)=∑
χ∈χ
[[{(r, s) ∈ χ : (s, r) ∈ ŷ} �= ∅]], (3.3)

where [[A]] equals 1 is the predicate A is true, and equals zero otherwise. Each summand
is an indicator function of the event ‘the set {(r, s) ∈ χ : (s, r) ∈ ŷ} is not empty’. The set
contains all the ordered pairs (r, s) belonging to a specific coverχ ∈ χ which are mismatched
by the total-ordering ŷ. In other words, the loss equals the number of cover elements χ ∈ χ
that contain at least a single ordered pair (r, s) for which the total-ordering is not consistent.
Since the family of cover loss functions is a sum of indicator functions of events we denote it
by I. Furthermore, if the cover χ is omitted it is assumed that a single cover χ = {y} is used,
and the loss indicates whether an error occurred or not, and in this case the loss is called
IsError. On the other hand, if the cover contains only singleton elements, χ = y, the loss
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Figure 3.4 An illustration of the semi-order for a specific multi-class multi-label problem.
There are 5 possible categories and the target is the first two categories.

counts the number of mismatched pairs, and is called ErrorSetSize. The four specific loss
functions mentioned above are parameterized by different covers of the target semi-order y.
Specifically, for the first loss mentioned above we define a cover with a single element, χ1 =
{χ1}, where χ1 = {(1, 3), (1, 4), (1, 5), (2, 3), (2, 4), (2, 5)}. For the second loss function
we define a cover with six elements, each containing a single pair of the semi-order y, that is
χ2 = {χi}6i=1 where χ1 = {(1, 3)}, χ2 = {(1, 4)}, χ3 = {(1, 5)}, χ4 = {(2, 3)},χ5 = {(2, 4)}
and χ6 = {(2, 5)}. For the third loss function, which counts the number of relevant categories
ranked below an irrelevant category, we define a cover, with an element per relevant topic, and
get, χ3 = {χ1, χ2}, χ1 = {(1, 3), (1, 4), (1, 5)} and χ2 = {(2, 3), (2, 4), (2, 5)}. Similarly,
for the fourth loss function, which counts the number of irrelevant categories ranked above a
relevant category, we define a cover, with an element per irrelevant category, and get, χ4 =
{χ1, χ2, χ3}, χ1 = {(1, 3), (2, 3)}, χ2 = {(1, 4), (2, 4)} and χ3 = {(1, 5), (2, 5)}.

An illustration of the target appears in Figure 3.4. The two relevant categories 1 and 2
are marked with dark ellipses. The three remaining categories (3, 4, 5) are marked with light
ellipses. A directed edge from node 1 to node 3 designates that category 1 is ranked above
category 3 in the target. There is a one-to-one correspondence between relation pairs in the
target semi-order and edges in the induced graph. The four covers corresponding to the four
loss functions are depicted in Figure 3.5.

The effect of the cover χ used may be crucial: a smaller cover size leads to a loss function
which is only sensitive to the existence of a mistake and is indifferent to its exact nature. In
contrast, a large cover with small elements describes a loss that takes the ‘small details’ into
account. The natural question that arises is what cover should be used? The answer is domain
and task dependent. For example, in a problem of optical character recognition, if the correct
digit is not ranked at the top of the list, it apparently does not matter how many categories
are ranked above it. In other words, we would like to know whether an error occurred or
not. However, with respect to the problem of document categorization, where each document
is associated with a subset of relevant categories, it seems more natural to ask how many
categories are mismatched by the total-order. To highlight this observation, we slightly
modify our definitions and denote an example by a triplet (x, y, χ): an instance x, a target
semi-order y and a cover χ of y. Thus the choice of loss is part of the problem description
and is not a task of the learning algorithm. Since the loss functions are parameterized by
a cover χ of the target y we call them cover loss functions. We write the loss function of
Equation (3.3) as

I (W; (x, y, χ))=
∑
χ∈χ
[[{(r, s) ∈ χ : (wr · x)≤ (ws · x)} �= ∅]]. (3.4)
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Figure 3.5 An illustration of covering loss computed for four different coverings. The target
semi-order constitutes a set of six relation pairs, induced from a multi-class multi-label
problem which ranks categories 1, 2 above categories 3, 4, 5. The prediction total-order is
given by ŷ= {(1, 3), (3, 4), (4, 2), (2, 5)}. The four covers χ i for i = 1, 2, 3, 4 correspond
to the four covers defined in the text, the index number of the title corresponds to the specific
elements for the cover. Each plot corresponds to a specific element in a specific cover. A solid
edge designates an order-pair in which the total-ordering ŷ is consistent, and a dotted edge
designates a pair in which the total-order is not consistent with the semi-order. The value
of the loss function is the number of plots which contain at least a single dotted edge. Top:
The cover reflects the number of pairs-elements in the semi-order which the total-order is
not consistent with (loss = 2). Bottom Left: The cover indicates whether the total-ordering
is perfect or not (loss= 1, not perfect). Bottom Center: The cover reflects the number of
relevant topics which are ranked below a relevant topic (loss= 1). Bottom Right: The cover
reflects the number of non-relevant topics which are ranked above a relevant topic (loss= 2).

3.4 Hinge Loss Functions

The rich family of loss functions defined above suffers from similar drawbacks to the zero-
one loss mainly used for binary classification. First, it does not take into consideration
the absolute value of the inner product (wr · x) and only compares relations. Thus if two
hypotheses make an error when predicting a specific example, but in one of them some
quantities are larger than in the other, their loss is equal. The other drawback of the zero-
one loss is its discontinuity in the parameters vector W. Thus, when we cast the learning
algorithms as optimization problems, the outcome is often hard to solve.

We thus combine this family of combinatorial loss functions together with the hinge
loss (see e.g. Cristianini and Shawe-Taylor 2000; Schölkopf and Smola 2002). Focusing
on the hypothesis class of linear prediction functions above, we assume ŷ= ((w1 · x) , . . . ,
(wk · x)). A single summand of Equation (3.4) is bounded by

[[{(r, s) ∈ χ : (s, r) ∈ ŷ} �= ∅]] ≤ max
(r,s)∈χ

[1− ((wr · x)− (ws · x))]+.

Clearly, if (r, s) ∈ ŷ (which is equivalent to (wr · x) > (ws · x)) then the left-hand side of
the equation equals zero and the bound holds trivially. Otherwise, (wr · x)≤ (ws · x) and the
left-hand side of the equation is 1. Furthermore, ((wr · x)− (ws · x))≤ 0 and the right-hand
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side is at least 1. We thus bound the discrete loss of Equation (3.4) with the corresponding
sum of hinge loss terms:

I (W; (x, y, χ)) ≤H (W; (x, y, χ))=
∑
χ∈χ

max
(r,s)∈χ

[1− ((wr · x)− (ws · x))]+. (3.5)

Similar to cover loss functions we call the right-hand side of the above equation the hinge
cover loss and it is denoted by H. The two extreme cases need to be described in detail.
On the one hand, if the cover χ contains a single element, then the sum in Equation (3.5)
disappears and the loss becomes

max
(r,s)∈y

[1− ((wr · x)− (ws · x))]+,

which is larger than 1 if the prediction is not perfect. On the other hand, if the cover contains
only singleton elements, then the max operator in Equation (3.5) vanishes and we obtain∑

χ∈y
[1− ((wr · x)− (ws · x))]+,

which bounds the number of mismatched pairs in the target semi-order. If a specific cover is
not used, i.e. H (W; (x; y)) then it is assumed that the single cover χ = {y} is used.

3.5 A Generalized Perceptron Algorithm

The Perceptron algorithm (Rosenblatt 1958) is a well known online algorithm for binary
classification problems. The algorithm maintains a weight vector w ∈ R

n used for prediction.
Geometrically, the weight vector divides the space into two half spaces, and algebraically we
compute the sign of the inner-product (w · x). To motivate our algorithm let us now describe
the Perceptron algorithm using the notation employed in this chapter.

To implement the Perceptron algorithm using a collection of two weight vectors W with
one weight vector (prototype) per class, we set the first weight vector w1 to the hyperplane
parameter w the Perceptron maintains and the weight vector w2 to −w. We now modify
W= (w1, w2) every time the algorithm misclassifies x as follows. If the correct label is 1 we
replace w1 with w1 + x and w2 with w2 − x. Similarly, we replace w1 with w1 − x and w2
with w2 + x when the correct label is 2 and x is misclassified. Thus, the weight vector wy
is moved toward the misclassified instance x while the other weight vector is moved away
from x. Note that this update implies that the total change to the two prototypes is zero. An
illustration of this geometrical interpretation is given on the left-hand side of Figure 3.6. It is
straightforward to verify that the algorithm is equivalent to the Perceptron algorithm.

The algorithm we now describe (and its corresponding analysis) employs a refined notion
of mistake by examining all pairs of categories. Whenever I (W; (x, y, χ)) > 0 and the
predicted ranking is not perfect, there must be at least one pair of categories (r, s) ∈ y whose
ordering according to the predicted ranking disagrees with the feedback y, i.e. category r is
ranked not-above category s ((wr · x)≤ (ws · x)) but (r, s) belongs to the target label. We
therefore define the error-set of (W, (x; y)) as the set of all pairs whose predicted ranking
disagrees with the feedback. The error-set is formally defined as

E = {(r, s) ∈ y : (wr · x)≤ (ws · x)}. (3.6)
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Figure 3.6 A geometrical illustration of the update for a binary problem (left) and a four-class
multi-class single-label problem (right) using the Multicategorization Perceptron (MCP)
algorithm.

Since our algorithm is a generalization of the Perceptron algorithm to multicategorization,
we refer to it as the MCP algorithm, for Multicategorization Perceptron.

The error-set defined in Equation (3.6) plays a major role in updating the weight vectors.
Generalizing the Perceptron’s update which moves the (single) separating hyperplane toward
the example x, in our setting we would like to move each weight vector wr toward x or
away from it. However, there might be quite a few categories which are ranked correctly.
These categories include all of the categories that are not involved with any inconsistency
between the target semi-order and the predicted ranking. By definition, the indices of wrongly
ordered pairs of categories constitute the error-set. For each pair (r, s) of categories, we
assign a weight denoted αr,s , constituting a k × k matrix. The value of αr,s designates the
effect of each categories-pair (r, s) on the modification of the prediction function W. We
set the weights αr,s to zero if neither the category-pair (r, s) nor the category-pair (s, r)
are in E. For each element χ in the cover χ which has at least one pair violated by the
prediction (namely χ ∩ E �= ∅), we set its value to be inversely proportional to the size of the
intersection, that is:

αr,s =


+ 1

|χ ∩ E| (r, s) ∈ E ∩ χ
− 1

|χ ∩ E| (s, r) ∈ E ∩ χ
0 otherwise.

(3.7)

By definition we have,
∑
(r,s)∈yi αr,s = I (W; (x; y; χ))= |{χ ∈ χ i : χ ∩ E �= ∅}|.

We further define the amount by which the weight vectors are moved toward x or away
from it. For each category indexed r we define τr to be

∑
s αr,s and add to wr the input

instance x scaled by τr : wr ←wr + τrx. The sign of τr determines whether the rth weight
vector is pushed towards x or away from it. Categories whose predicted rank is low are
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Initialize: Set W1 = 0 : w1,1 = w1,2 = · · · = w1,k = 0.
Loop: For i = 1, 2, . . . , m

• Get a new instance: xi ∈ R
n.

• Predict: ŷi =
((

wi,1 · xi
)
, . . . ,

(
wi,k · xi

))
.

• Get a new target yi .
• Suffer loss: Li = I

(
Wi; (xi; yi; χ i )

)
.

• If Li > 0 :

I. Set Ei =
{
(r, s) : (r, s) ∈ yi ,

(
wi,r · xi

)≤ (
wi,s · xi

)}
.

II. Form a parameter matrix αir,s r, s = 1, . . . , k as following:

αr,s =


+ 1

|χ ∩Ei | (r, s) ∈Ei and (r, s) ∈ χ for some χ ∈ χ i

− 1

|χ ∩Ei | (s, r) ∈ Ei and (s, r) ∈ χ for some χ ∈ χ i
0 otherwise.

III. Set τr,i =∑k
s=1 α

i
r,s for r = 1, . . . , k.

IV. Update: wi+1,r = wi,r + τr,ixi for r = 1, . . . , k.

Output : h(x)= ((
wm+1,r · x

)
, . . . ,

(
wm+1,k · x

))
.

Figure 3.7 Generalized Perceptron algorithm for multicategorization.

likely to be moved more aggressively toward x, if they should be ranked above many other
categories in accordance with the semi-order y. Similarly, categories which should be ranked
below many other categories in accordance with the semi-order y are pushed away from x
in different proportions, depending on how high they are ranked. In other words, if αr,s > 0
then the inner product between x and wr should be increased and the inner product between
x and ws should be decreased, and vice versa for the case αr,s < 0. The single coefficient
τr balances these two opposite requirements for categories r , which should be ranked both
above some categories s and below some other categories s. The pseudo-code describing the
family of category algorithms for bounded ranking-losses is given in Figure 3.7.

To further illustrate the update, let us look at a specific realization of the values αr,s .
Concretely, let us assume that all the values are equal. We can therefore assume that αr,s = 1
for (r, s) ∈ E and, at the end, scale all the values of τr by a constant. In this case, the amount
by which we move each prototype directly depends on its location in the ranked list. The value
τr of a category is equal to the difference between the number of categories which should be
ranked above it, but they are not, and the number of categories which should be ranked
below it, but they are not. Formally, the value of τr for this case is given by |{s : (r, s) ∈
E}| − |{s : (s, r) ∈ E}|.

A geometric illustration of this update for a multi-class single-labeled problem is given
in the right-hand side of Figure 3.6. There are four classes in the example appearing in
the figure. The target semi-order is y= {(1, 2), (1, 3), (1, 4)} and since w1 is not the most
similar vector to x, it is moved toward x. The weight vectors w2 and w3 are also modified



FROM BINARY CLASSIFICATION TO CATEGORIAL PREDICTION 39

Parameter:

• Clipping : C

Initialize: Set W1 = 0.
Loop: For i = 1, 2, . . . , m

• Get a new instance: xi ∈ R
n.

• Predict: ŷi =
((

wi,1 · xi
)
, . . . ,

(
wi,k · xi

))
.

• Get a new target yi and a new cover χ i of it.
• Suffer loss: Li = I

(
Wi; (xi; yi; χ i )

)
.

• Set Wi+1 to be the solution W= (w1, . . . , wk) of the following optimization problem
(Equation (3.9)) :

minW
1
2‖W−Wi‖2

2 + CH (W; (xi; yi )).

Output : h(x)= ((
wm+1,r · x

)
, . . . ,

(
wm+1,k · x

))
.

Figure 3.8 The Passive–Aggressive algorithm for multicategorization problems (primal
formulation).

by subtracting x/2 from each one. The last weight vector w4 is not in the error-set since
(w1 · x) > (w4 · x) and therefore it is not modified.

The following theorem provides a bound of the cumulative ranking loss for the specific
choice of loss functions and the parameter matrix αr,s we described above.

Theorem 3.5.1 Let (x1, y1), . . . , (xm, ym) be an input sequence for the family of algorithms
described in Figure 3.7, where xi ∈R

n and yi ∈ Y × Y is a semi-order. Set R =maxi ‖xi‖.
Let W∗ ∈ R

n×k be any collection of k vectors. Assume that the loss function of the algorithm
is of the form described in Equation (3.3), with cover parameters χ i , and its value is upper
bounded, I

(
Wi; (xi , yi; χ i )

)≤ A. Then the cumulative loss the algorithm suffers is upper
bounded by

m∑
i=1

I
(
Wi; (xi , yi , χ i )

)≤ 2 min{k − 1, A}R2‖W∗‖2 + 2
∑
i

H
(
W∗; (xi , yi, χ i )

)
.

The theorem compares the total number of mistakes the algorithm makes through a run
over a specific-given input sequence with the performance of a fixed prediction function
parameterized by W∗. Specifically, it bounds the cumulative loss of the algorithm with a
constant that only depends on global properties of the sample and covers, and the cumulative
hinge loss of the fixed prediction-function W∗ over the same sequence. For each example
i, both the algorithm of Figure 3.7 and the fixed prediction-function are evaluated using the
same cover χ i .

3.6 A Generalized Passive–Aggressive Algorithm

We now turn to describe a Passive–Aggressive (PA) algorithm designed for the prob-
lem of multicategorization which includes as a special case, the binary PA algorithm
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(Crammer et al. 2006). We construct the algorithm in a way similar to transforming the
Perceptron algorithm into the MCP algorithms.

The general method we use for deriving our online update rule is similar to the PA
algorithm (Crammer et al. 2006) and thus we refer to it as the MCPA algorithm, for
Multicategorization Passive–Aggressive algorithm. We define the new collection of k weight
vectors Wi+1 as the solution to the following optimization problem

min
W

1

2
‖W−Wi‖2

2 + CH
(
W; (xi; yi; χ i )

)
, (3.8)

where C > 0 is a tradeoff parameter. As C→ 0 the algorithm focuses on finding prediction
functions W close to the current prediction function Wi , even though it might suffer a
large hinge loss. On the other hand, when C→∞ the algorithm focuses on a prediction
function which attains small (or even zero) hinge loss, although the prediction function may
be extremely different from the current prediction function.

Writing the optimization problem of Equation (3.8) explicitly we obtain

min
W

1

2
‖W−Wi‖2

2 + C
∑
χ∈χ i

ξχ (3.9)

subject to: ∀χ ∈ χ i , ∀(r, s) ∈ χ : (wr · xi )− (ws · xi )≥ 1− ξχ
∀χ ∈ χ i : ξχ ≥ 0,

where ξχ ≥ 0 are slack variables. The pseudo-code describing the online passive–aggressive
approach for multicategory problems is given in Figure 3.8. In the following section we re-
write the algorithm in terms of the dual variables, which will allow us to extend into nonlinear
prediction function via Mercer kernels (Aizerman et al. 1964; Mercer 1909).

3.6.1 Dual Formulation

We now compute the dual optimization problem for two reasons, both involving the design
of the algorithm. First, as in many such algorithms, the dual optimization problem depends
only on inner-products and thus a kernel operator can be directly employed. Second, the
primal optimization problem has n× k variables (w1 . . . wk) which can be quite large if we
use many features (large value of n� k). On the other hand, the dual has at most k × k
variables, which can be significantly small since k� n.

We use Lagrange theory to obtain the following dual (the details of derivation are deferred
to Section 3.9.1):

min
{αir,s }

1

2
‖xi‖2

k∑
r=1

(∑
s

αir,s

)2

+
∑

(r,s)∈yi

αir,s(
(
wi,r · xi

)− (
wi,s · xi

)− 1)

subject to:


αir,s ≥ 0 (r, s) ∈ yi
αis,r =−αir,s (r, s) ∈ yi
αis,r = 0 otherwise

∀χ ∈ χ i :
∑
(r,s)∈χ

αir,s ≤ C. (3.10)
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Parameter:

• Kernel functionK (x1, x2)

• Clipping: C

Initialize: Set τr,i = 0 for r = 1, . . . , k, i = 1, . . . , m.
Loop: For i = 1, 2, . . . , m

• Get a new instance: xi ∈ R
n.

• Predict:

ŷi =
(
· · ·

i−1∑
j=1

τj,rK
(
xi , xj

)
. . .

)
.

• Get a new target yi and a new cover χ i of it.
• Suffer loss: Li = I

(
Wi; (xi; yi; χ i )

)
.

• Set {αir,s} to be the solution of the optimization problem of Equation (3.10).
• Set τi,r =∑

s α
i
r,s for r = 1, . . . , k.

Output: h(x)=
(
· · ·

m∑
j=1

τj,rK
(
x, xj

)
. . .

)
.

Figure 3.9 The Passive–Aggressive algorithm for multicategorization problems (dual
formulation).

Note how the specific cover loss used in the objective of Equation (3.9) is translated into a set
of inequality constraints,

∑
(r,s)∈χ αir,s ≤ C for all χ ∈ χ i . Each cover element is translated

into a single inequality. The pseudo-code describing the dual MCPA appears in Figure 3.9. A
performance bound for the PA algorithm (either in its primal form or its dual form), similar
to Theorem 3.5.1, can be derived. We refer the reader to Section 3.8 for more information.

The dual version of MCPA (Figure 3.9) algorithm is tightly related to the MCP (Figure 3.7)
presented in the previous section. In fact both algorithms perform exactly the same steps,
using the same matrix parameters (αir,s) and differ only in the way these parameters are
updated. MCPs set their value using a closed form set of equations (Equation (3.7)), while
the MCPA set its values to be a solution of a quadratic program (QP), either in the primal
parameters or their dual.

3.7 A Batch Formulation
The passive–aggressive framework is tightly related to SVM. In both cases we use Euclidean
norm for regularization and hinge loss to evaluate the performance. One possible view is that
the PA algorithms approximate a solution for the QP of SVMs. Below, we present a QP for
our problem of multicategorization which can be solved using any QP solver. Given training
data {(xi , yi )}m1 and a choice of cover χ i for each training instance, the primal objective is a
sum of Euclidean norm of the parameters and the hinge loss over the sample given by

min
W

1

2
‖W‖2

2 + C
∑
i

H
(
W; (xi; yi; χ i )

)
. (3.11)
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Writing the optimization problem explicitly we obtain

min
W,{{ξχi }χi∈χ i }i

1

2
‖W‖2

2 + C
∑
i

∑
χi∈χ i

ξχi (3.12)

subject to: ∀i, ∀χi ∈ χ i , ∀(r, s) ∈ χi : (wr · xi)− (ws · xi ) ≥ 1− ξχi
∀i, ∀χi ∈ χ i : ξχi ≥ 0,

where ξχi ≥ 0 are slack variables. We note in passing the two well-known versions of multi-
class (single-label) SVMs (Crammer and Singer 2001; Guermeur et al. 2000; Weston and
Watkins 1999) are a special case of our formulation. First, the label relation y always contains
k − 1 elements of the form y= {(y, r)}r �=y for a true label y ∈ C. Second, the coverχ is either
composed of singletons (Guermeur et al. 2000; Weston and Watkins 1999) or it equals the
label relation χ = y (Crammer and Singer 2001).

As before, in order to apply Mercer kernels we compute the dual using Lagrange theory
(details appear in Section 3.9.2),

max
{αir,s }

− 1

2

∑
p

∑
i,j

∑
r,s

αip,rα
j
p,s

(
xi · xj

)+∑
i

∑
(r,s)∈yi

αir,s

subject to: ∀i

αir,s ≥ 0 (r, s) ∈ yi
αis,r =−αir,s (r, s) ∈ yi
αis,r = 0 otherwise

∀i∀χ ∈ χ i :
∑
(r,s)∈χ

αir,s ≤ C. (3.13)

Two comments are in order. First, when using the dual formulation in practice, the number
of parameters can be trivially reduced using the constraints on αir,s in Equation (3.13),
specifically setting αir,s = 0 if both (r, s), (s, r) /∈ yi and αir,s =−αis,r if (s, r) /∈ yi . Second,
the dual of the batch formulation (Equation (3.13) can be reduced to the dual of the online
formulation (Equation (3.10)) by choosing some i, fixing the value of αjr,s for j < i and
setting αjr,s = 0 for j > i. Formally, we factor as follows:

wr =
∑
j<i

∑
s

α
j
r,sxj +

∑
s

αir,sxi

=
∑
j>i

∑
s

α
j
r,sxj

= wi,r +
∑
s

αir,sxi ,

where wi,r =∑
j<i

∑
s α

j
r,sxj is fixed and depends only on the examples xj for j < i. In this

respect, the online algorithm of Figure 3.9 approximates the optimal solution of the batch
optimization problem by iterating over the example index i, and on each iteration optimizing
for {αir,s}(r,s).

In general one can expect the performance of the batch formulation to be superior to
the online algorithm presented in the previous section. This superiority comes with a price
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of efficiency. The QP of Equation (3.13) has
∑
i |yi| =O(mk2) variables, all constrained

to be non-negative, and
∑
i |χ i | additional inequality constraints. The online formulation

(Figure 3.9) is more efficient as it breaks the large problem into a sequence of smaller
QPs, each with |yi| non-negative variables and |χ i | constraints. Since the cost of solving
a QP is super-linear, then solving a sequence of small QPs will be more efficient. A similar
tradeoff between performance and efficiency holds between the two online algorithms. The
performance of the MCP algorithm (Figure 3.7) is inferior to performance of the MCPA
algorithm (Figure 3.9). However, the latter solves a QP on each iteration, while the MCP set
its parameters using a closed form rule.

3.8 Concluding Remarks

In each of the sections above a choice was made from a few possible alternatives. We
now sketch a few of the alternatives. The chapter investigated algorithms for multi-
category problems, where some predictions or mistakes are preferable over others. It
generalizes binary-prediction problems (see Chapter 1 and Cortes and Vapnik 1995;
Cristianini and Shawe-Taylor 2000; Rosenblatt 1958; Schölkopf and Smola 2002) and its
standard generalization of multi-class problems, where there are more than two possible
labels, but no mistake is preferable over another (Crammer and Singer 2001, 2003). A
common approach for such problems is to reduce a single multi-class problem into few
binary-classification problems, and then to combine the output of the binary classifiers
into a single multi-class prediction. For example, the one-vs-rest reduction builds k binary
classifiers, one per class, each of which is trained to predict if the label of a given input is
a specific class r or not (e.g. Cortes and Vapnik 1995). Other reductions include the one-
vs.-one (Furnkranz 2002) and error correcting output codes (ECOC) (Allwein et al. 2000;
Crammer and Singer 2002; Dietterich and Bakiri 1991, 1995).

A well investigated approach for complex problems such as automatic speech recognition
is to predict the phonemes associated with an entire acoustic model simultaneously, rather
than predicting the phoneme of each frame independently. Such approaches often ignore
the fact that some mistakes are preferable over others, yet are modeling correlation between
temporal-consecutive frames. Two notable examples are Hidden Markov Models (Rabiner
and Juang 1993) or Conditional Random Fields (Lafferty et al. 2001). See Chapter 5 and
Chapter 10 for more details.

Semi-orders and cover loss functions provide a flexible method to state what predictions
are preferable to others and how to evaluate various mistakes. On some occasions, the
richness of these loss functions is not enough, and other evaluation measures are used (for
example the Levenshtein distance). Our algorithms can be extended to incorporate these loss
functions at the price of weaker analysis. See Crammer (2004) for more details.

We presented two online algorithms and one batch algorithm, all of which have counter-
parts designed for binary classification. Specifically, as noted above, MCP generalizes the
Perceptron algorithm (Minsky and Papert 1969; Rosenblatt 1958) and MCPA generalizes
the PA algorithms (Crammer et al. 2006). Specific cases of our general approach include
extensions of the Perceptron algorithms for multi-class (Crammer and Singer 2003) and a
more detailed treatment can be found elsewhere (Crammer 2004).
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One of the first reductions of the Perceptron algorithm to multi-class single-labeled
problems is provided in the widely read and cited book of Duda and Hart (1973). The multi-
class version in the book is called Kesler’s construction. Kesler’s construction is attributed to
Carl Kesler and was described by Nilsson (1965). Kesler construction was further generalized
to category ranking problems by Har-Peled et al. (2002).

There are a few extensions of SVM (see Cristianini and Shawe-Taylor 2000; Schölkopf
and Smola 2002, and the references therein) for multi-class problems (Crammer and Singer
2001; Guermeur et al. 2000; Hsu and Lin 2002; Vapnik 1998; Weston and Watkins 1999).
They differ from each other in the way the various labels are combined. Other extensions for
multi-class multi-labeled problems also exist (Elisseeff and Weston 2001).

3.9 Appendix. Derivations of the Duals of the
Passive–Aggressive Algorithm and the Batch
Formulation

3.9.1 Derivation of the Dual of the Passive–Aggressive Algorithm

The corresponding Lagrangian of the optimization problem in Equation (3.9) is

L(W; α)= 1

2

k∑
r=1

∥∥wr − wi,r
∥∥2 + C

∑
χ∈χ i

ξχ −
∑
χ∈χ i

βχξχ

+
∑
χ∈χ i

∑
(r,s)∈χ

αir,s
(
1− ξχ − (wr · xi )+ (ws · xi )

)
, (3.14)

where αir,s ≥ 0 (for (r, s) ∈ y) are Lagrange multipliers and we used the notation that W is
written as a concatenation of the k weight vectors. Furthermore, βχ are Lagrange multipliers
associated with the inequality constraints ξχ ≥ 0.

To find a saddle point of L we first differentiate L with respect to ξχ (for χ ∈ χ i ) and set
it to zero:

∇ξχL= C − βξ −
∑
(r,s)∈χ

αir,s . (3.15)

Setting the derivative to zero we get∑
(r,s)∈χ

αir,s = C − βχ ≤ C ∀χ ∈ χ i , (3.16)

where the inequality holds since βχ ≥ 0.
We next differentiate L with respect to wp (for p = 1, . . . , k):

∇wpL= wp − wi,p −
∑

s : (p,s)∈yi

αip,sxi +
∑

r : (r,p)∈yi

αir,pxi = 0

⇒ wp = wi,p +
∑

s : (p,s)∈yi

αip,sxi −
∑

r : (r,p)∈yi

αir,pxi . (3.17)

The Lagrange coefficients αir,s are defined only for (r, s) ∈ yi . To simplify Equation (3.17) we
define a matrix α of coefficients which extends the definition of αir,s for all r, s = 1, . . . , k.
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The value of the elements indexed by (r, s) ∈ yi is already defined by the optimization
problem. We define the matrix to be anti-symmetric, that is αis,r =−αir,s , which automatically
sets the values of the diagonal to zero, αir,r = 0 and the values of the elements (s, r) for
(r, s) ∈ yi . We set all the other elements to zero. This definition agrees with the definition of
the matrix α in Section 3.5.

Under this extension of the Lagrange multipliers Equation (3.17) is rewritten as

wr = wi,r +
∑
s

αir,sxi
def= τrxi . (3.18)

This presentation of the update step is of the same form used for the MCP given in
Section 3.5. Substituting Equation (3.16) and Equation (3.18) back in the Lagrangian of
Equation (3.14) we get

L= 1

2

k∑
r=1

∥∥∥∥∑
s

αir,sxi

∥∥∥∥2

+ C
∑
χ∈χ i

ξχ −
∑
χ∈χ i

βχ ξχ

+
∑
χ∈χ i

∑
(r,s)∈χ

αir,s

(
1− ξχ −

(
wi,r +

∑
p

αir,pxi · xi
)
+
(

wi,s +
∑
p

αis,pxi · xi
))

= 1

2

k∑
r=1

∥∥∥∥∑
s

αir,sxi

∥∥∥∥2

+ C
∑
χ∈χ i

ξχ −
∑
χ∈χ i

βχ ξχ

+
∑

(r,s)∈yi

αir,s
(
1− (

wi,r · xi
)+ (

wi,s · xi
))− ∑

χ∈χ i
ξχ

∑
(r,s)∈χ

αir,s

+
∑

(r,s)∈yi

αir,s

(
−
∑
p

αir,p (xi · xi )+
∑
p

αis,p (xi · xi )
)

= 1

2
‖xi‖2

k∑
r=1

(∑
s

αir,s

)2

+
∑

(r,s)∈yi

αir,s
(
1− (

wi,r · xi
)+ (

wi,s · xi
))

+ ‖xi‖2
∑

(r,s)∈yi

αir,s

∑
p

(−αir,p + αis,p)+
∑
χ∈χ i

ξχ

(
C − βχ −

∑
(r,s)∈χ

αir,s

)
. (3.19)

The last term equals zero because of Equation (3.15) and thus

L= 1

2
‖xi‖2

k∑
r=1

(∑
s

αir,s

)2

+
∑

(r,s)∈yi

αir,s
(
1− (

wi,r · xi
)+ (

wi,s · xi
))

+ ‖xi‖2
∑

(r,s)∈yi

αir,s

∑
p

(−αir,p + αis,p). (3.20)

We now further derive the last term. Using the asymmetry property used to define the
matrix α we get, αir,s(−αir,p + αis,p)= αis,r (−αis,p + αir,p). Substituting in the last term of
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Equation (3.20), together with the fact that αir,s = 0 for (r, s), (s, r) /∈ yi we obtain∑
(r,s)∈yi

αir,s

∑
p

(−αir,p + αis,p)

= 1

2

( ∑
(r,s)∈yi

αir,s

∑
p

(−αir,p + αis,p)+
∑

(s,r)∈yi

αir,s

∑
p

(−αir,p + αis,p)
)

=−1

2

∑
r,s,p

αir,sα
i
r,p +

1

2

∑
r,s,p

αir,sα
i
s,p

=−1

2

∑
r,s,p

αir,sα
i
r,p −

1

2

∑
r,s,p

αis,rα
i
s,p

=−
∑
r,s,p

αir,sα
i
r,p, (3.21)

where the last equality is due to change of names of the indices, and the equality preceding
it holds by using the asymmetry of the matrix α. Substituting Equation (3.21) back in
Equation (3.20) we obtain

L= 1

2
‖xi‖2

k∑
r=1

(∑
s

αir,s

)2

+
∑

(r,s)∈yi

αir,s
(
1− (

wi,r · xi
)+ (

wi,s · xi
))

+ 1

2
‖xi‖2

∑
r,s

αir,s

∑
p

(−αir,p + αis,p)

= − 1

2
‖xi‖2

k∑
r=1

(∑
s

αir,s

)2

+
∑

(r,s)∈yi

αir,s
(
1− (

wi,r · xi
)+ (

wi,s · xi
))
.

To conclude, the dual is given by

min
{αir,s }

1

2
‖xi‖2

k∑
r=1

(∑
s

αir,s

)2

+
∑

(r,s)∈yi

αir,s
((

wi,r · xi
)− (

wi,s · xi
)− 1

)

subject to:


αir,s ≥ 0 (r, s) ∈ yi
αis,r =−αir,s (r, s) ∈ yi
αis,r = 0 otherwise

∀χ ∈ χ i :
∑
(r,s)∈χ

αir,s ≤ C. (3.22)

3.9.2 Derivation of the Dual of the Batch Formulation

We first write the Lagrangian of Equation (3.12):

L(W; α)= 1

2

k∑
r=1

‖wr‖2 + C
∑
i

∑
χi∈χ i

ξ iχi −
∑
i

∑
χi∈χ i

βiχi ξ
i
χi

(3.23)

+
∑
i

∑
χi∈χ i

∑
(r,s)∈χi

αir,s (1− ξ iχi − (wr · xi )+ (ws · xi )),
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To find a saddle point of L we first differentiate L with respect to ξ iχi (for i = 1, . . . , m
and χi ∈ χ i ) and set it to zero:

∇ξ iχiL= C − β
i
χi
−

∑
(r,s)∈χi

αir,s . (3.24)

Setting the derivative to zero we get∑
(r,s)∈χi

αir,s = C − βiχi ≤ C ∀χi ∈ χ i , (3.25)

where the inequality holds since βiχi ≥ 0.
We next differentiate L with respect to wp (for p = 1, . . . , k):

∇wpL= wp −
∑
i

∑
s : (p,s)∈yi

αip,sxi +
∑
i

∑
r : (r,p)∈yi

αir,pxi = 0

⇒ wp =
∑
i

∑
s : (p,s)∈yi

αip,sxi −
∑
i

∑
r : (r,p)∈yi

αir,pxi . (3.26)

As before, the Lagrange coefficients αir,s are defined only for (r, s) ∈ yi . To simplify
Equation (3.26) we define a set of matrices of coefficients αi , one per example, which extends
the definition of αir,s for all r, s = 1, . . . , k similarly to the extension defined in the PA
algorithms. Under this extension of the Lagrange multipliers Equation (3.26) is rewritten as

wr =
∑
i

∑
s

αir,sxi
def=

∑
i

τr,ixi . (3.27)

Substituting Equation (3.27) back in the Lagrangian of Equation (3.23) we get

L= 1

2

k∑
p=1

∥∥∥∥∑
i

∑
s

αip,sxi

∥∥∥∥2

+ C
∑
i

∑
χ∈χ i

ξχ −
∑
i

∑
χi∈χ i

βiχi ξχ

+
∑
i

∑
χ∈χ i

∑
(r,s)∈χ

αir,s

(
1− ξχ −

∑
j

∑
p

α
j
r,p

(
xj · xi

)+∑
j

∑
p

α
j
s,p

(
xj · xi

))

= 1

2

∑
p

∑
i,j

∑
r,s

αip,rα
j
p,s

(
xi · xj

)+ C∑
i

∑
χ∈χ i

ξχ −
∑
i

∑
χi∈χ i

βiχi ξχ

+
∑
i

∑
χ∈χ i

∑
(r,s)∈χ

αir,s −
∑
i

∑
χ∈χ i

∑
(r,s)∈χ

αir,sξχ

+
∑
i

∑
χ∈χ i

∑
(r,s)∈χ

αir,s

(
−
∑
j

∑
p

α
j
r,p

(
xj · xi

)+∑
j

∑
p

α
j
s,p

(
xj · xi

))

= 1

2

∑
p

∑
i,j

∑
r,s

αip,rα
j
p,s

(
xi · xj

)+∑
i

∑
χ∈χ i

∑
(r,s)∈χ

αir,s
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+
∑
i

∑
χ∈χ i

∑
(r,s)∈χ

αir,s

(
−
∑
j

∑
p

α
j
r,p

(
xj · xi

)+∑
j

∑
p

α
j
s,p

(
xj · xi

))

+
∑
i

∑
χi∈χ i

(
C − βiχi −

∑
(r,s)∈χ

αir,s

)
.

The last terms equal zero because of Equation (3.25). Rearranging the terms we get

L= 1

2

∑
p

∑
i,j

∑
r,s

αip,rα
j
p,s

(
xi · xj

)+∑
i

∑
χ∈χ i

∑
(r,s)∈χ

αir,s

+
∑
i,j

(
xj · xi

) ∑
(r,s)∈yi

αir,s

(
−
∑
p

α
j
r,p +

∑
p

α
j
s,p

)

= 1

2

∑
p

∑
i,j

∑
r,s

αip,rα
j
p,s

(
xi · xj

)+∑
i

∑
χ∈χ i

∑
(r,s)∈χ

αir,s

−
∑
i,j

(
xj · xi

) ∑
r,s,p

αir,sα
j
r,p,

where the last equality is due to Equation (3.21). Rearranging the terms again and adding the
constraints of Equation (3.25) we get the dual optimization problem:

max
{αir,s }

− 1

2

∑
p

∑
i,j

∑
r,s

αip,rα
j
p,s

(
xi · xj

)+∑
i

∑
(r,s)∈yi

αir,s

subject to: ∀i

αir,s ≥ 0 (r, s) ∈ yi
αis,r =−αir,s (r, s) ∈ yi
αis,r = 0 otherwise

∀i∀χ ∈ χ i :
∑
(r,s)∈χ

αir,s ≤ C. (3.28)
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A Large Margin Algorithm for
Forced Alignment1

Joseph Keshet, Shai Shalev-Shwartz, Yoram Singer and
Dan Chazan

We describe and analyze a discriminative algorithm for learning to align a phoneme sequence
of a speech utterance with its acoustical signal counterpart by predicting a timing sequence
representing the phoneme start times. In contrast to common Hidden Markov Models
(HMM)-based approaches, our method employs a discriminative learning procedure in which
the learning phase is tightly coupled with the forced alignment task. The alignment function
we devise is based on mapping the input acoustic-symbolic representations of the speech
utterance along with the target timing sequence into an abstract vector space. We suggest
a specific mapping into the abstract vector space which utilizes standard speech features
(e.g. spectral distances) as well as confidence outputs of a frame-based phoneme classifier.
Generalizing the notion of separation with a margin used in Support Vector Machines (SVMs)
for binary classification, we cast the learning task as the problem of finding a vector in an
abstract inner-product space. We set the prediction vector to be the solution of a minimization
problem with a large set of constraints. Each constraint enforces a gap between the projection
of the correct target timing sequence and the projection of an alternative, incorrect, timing
sequence onto the vector. Though the number of constraints is very large, we describe a
simple iterative algorithm for efficiently learning the vector and analyze the formal properties
of the resulting learning algorithm. We report new experimental results comparing the
proposed algorithm with previous studies on forced alignment. The new results suggest

1Portions reprinted, with permission, from Joseph Keshet, Shai Shalev-Shwartz, Yoram Singer and Dan Chazan,
Large Margin Algorithm for Speech-to-Phoneme and Music-to-Score Alignment, IEEE Transactions on Audio,
Speech and Language Processing, 15(8) 2373–2382, 2007. c© 2008 IEEE.
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that the discriminative alignment algorithm outperforms the state-of-the-art systems when
evaluated on the TIMIT corpus.

4.1 Introduction

Forced alignment is the task of proper positioning of a sequence of phonemes in relation to a
corresponding continuous speech signal. An accurate and fast forced alignment procedure is a
necessary tool for developing speech recognition and text-to-speech systems. Most previous
work on forced alignment has focused on a generative model of the speech signal using
HMMs. See for example Brugnara et al. (1993), Hosom (2002), Toledano et al. (2003) and
the references therein. In this chapter we present a discriminative supervised algorithm for
forced alignment. The work presented in this chapter is based on Keshet et al. (2007).

This chapter is organized as follows. In Section 4.2 we formally introduce the forced
alignment problem. In our algorithm we use a cost function of predicting incorrect timing
sequence. This function is defined in Section 4.3. In Section 4.4 we describe a large
margin approach for the alignment problem. Our specific learning algorithm is described
and analyzed in Section 4.5. The evaluation of the alignment function and the learning
algorithm are both based on an optimization problem for which we give an efficient dynamic
programming procedure in Section 4.6. Next, in Section 4.7 we describe the base alignment
functions we use. Finally, we present experimental results in which we compare our method
with state-of-the-art approaches in Section 4.8.

4.2 Problem Setting

In this section we formally describe the forced alignment problem. In the forced alignment
problem, we are given a speech utterance along with a phonetic representation of the
utterance. Our goal is to generate an alignment between the speech signal and the phonetic
representation. We denote the domain of the acoustic feature vectors by X ⊂ R

d . The
acoustic feature representation of a speech signal is therefore a sequence of vectors x̄=
(x1, . . . , xT ), where xt ∈ X for all 1≤ t ≤ T . A phonetic representation of an utterance
is defined as a string of phoneme symbols. Formally, we denote each phoneme by p ∈ P ,
where P is the set of phoneme symbols. Therefore, a phonetic representation of a speech
utterance consists of a sequence of phoneme values p̄ = (p1, . . . , pk). Note that the number
of phonemes clearly varies from one utterance to another and thus k is not fixed. We denote
by P� (and similarly X �) the set of all finite-length sequences over P . In summary, the
input is a pair (x̄, p̄) where x̄ is an acoustic representation of the speech signal and p̄ is a
phonetic representation of the same signal. An alignment between the acoustic and phonetic
representations of a spoken utterance is a timing sequence s̄ = (s1, . . . , sk) where si ∈ N is
the start time (measured as frame number) of phoneme i in the acoustic signal. Each phoneme
i therefore starts at frame si and ends at frame si+1 − 1. An example of the notation described
above is depicted in Figure 4.1.

Clearly, there are different ways to pronounce the same utterance. Different speakers have
different accents and tend to speak at different rates. Our goal is to learn an alignment function
that predicts the true start times of the phonemes from the speech signal and the phonetic
representation.
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x2x1 x3

p1 = tcl p3 = ehp2 = t p4 = s

. . .

s1 s2 s3 s4

Figure 4.1 A spoken utterance labeled with the sequence of phonemes /p1 p2 p3 p4/ and
its corresponding sequence of start-times (s1 s2 s3 s4).

4.3 Cost and Risk

In this section we describe a discriminative supervised learning approach for learning an
alignment function f from a training set of examples. Each example in the training set is
composed of a speech utterance, x̄, a sequence of phonemes, p̄, and the true timing sequence,
s̄, i.e. a sequence of phoneme start times. Our goal is to find an alignment function, f ,
which performs well on the training set as well as on unseen examples. First, we define a
quantitative assessment of alignment functions. Let (x̄, p̄, s̄) be an input example and let f be
an alignment function. We denote by γ (s̄, f (x̄, p̄)) the cost of predicting the timing sequence
f (x̄, p̄) where the true timing sequence is s̄. Formally, γ : N∗ × N

∗ → R is a function that
gets two timing sequences (of the same length) and returns a scalar which is the cost of
predicting the second timing sequence where the true timing sequence is the first. We assume
that γ (s̄, s̄′) ≥ 0 for any two timing sequences s̄, s̄′ and that γ (s̄, s̄)= 0. An example for a
cost function is

γ (s̄, s̄′)= 1

|s̄| |{i : |si − s
′
i |> ε}|. (4.1)

In words, the above cost is the average number of times the absolute difference between the
predicted timing sequence and the true timing sequence is greater than ε. Recall that our goal
is to find an alignment function f that attains small cost on unseen examples. Formally, let
D be any (unknown) distribution over the domain of the examples, X ∗ × P∗ ×N

�. The goal
of the learning process is to minimize the risk of using the alignment function, defined as
the expected cost of f on the examples, where the expectation is taken with respect to the
distributionD:

risk(f )= E(x̄,p̄,s̄)∼D[γ (s̄, f (x̄, p̄))].
To do so, we assume that the examples of our training set are identically and independently
distributed (i.i.d.) according to the distribution D. Note that we only observe the training
examples but we do not know the distribution D. The training set of examples is used as a
restricted window throughout which we estimate the quality of alignment functions according
to the distribution of unseen examples in the real world,D. In the next sections we show how
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to use the training set in order to find an alignment function, f , which achieves a small cost
on the training set, and which achieves a small cost on unseen examples with high probability
as well.

4.4 A Large Margin Approach for Forced Alignment

In this section we describe a large margin approach for learning an alignment function.
Recall that a supervised learning algorithm for alignment receives as input a training set T =
{(x̄1, p̄1, s̄1), . . . , (x̄m, p̄m, s̄m)} and returns a alignment function f . To facilitate an efficient
algorithm we confine ourselves to a restricted class of alignment functions. Specifically, we
assume the existence of a predefined set of base alignment feature functions, {φj }nj=1. Each
base alignment feature is a function of the form φj : X ∗ × P∗ × N

∗ → R. That is, each
base alignment feature gets the acoustic representation, x̄, and the sequence of phonemes,
p̄, together with a candidate timing sequence, s̄, and returns a scalar which, intuitively,
represents the confidence in the suggested timing sequence s̄. We denote by φ(x̄, p̄, s̄) the
vector in R

n whose j th element is φj (x̄, p̄, s̄). The alignment functions we use are of the
form

f (x̄, p̄)= arg max
s̄

w · φ(x̄, p̄, s̄), (4.2)

where w ∈ R
n is a vector of importance weights that we need to learn. In words, f returns a

suggestion for a timing sequence by maximizing a weighted sum of the confidence scores
returned by each base alignment function φj . Since f is parameterized by w we use
the notation fw for an alignment function f , which is defined as in Equation (4.2). Note
that the number of possible timing sequences, s̄, is exponentially large. Nevertheless, as
we show later, under mild conditions on the form of the base alignment functions, {φj },
the optimization problem in Equation (4.2) can be efficiently calculated using a dynamic
programming procedure.

We now describe a large margin approach for learning the weight vector w, which defines
an alignment function as in Equation (4.2), from a training set T = {(x̄1, p̄1, s̄1), . . . ,

(x̄m, p̄m, s̄m)} of examples. Similar to the SVM algorithm for binary classification, our
approach for choosing the weight vector w is based on the idea of large-margin separation.
However, in our case, timing sequences are not merely correct or incorrect. Instead, the
cost function γ (s̄, s̄′) is used for assessing the quality of sequences. Therefore, we do not
aim at separating correct timing sequences from incorrect ones but rather try to rank the
sequences according to their quality. Theoretically, our approach can be described as a two-
step procedure: first, we construct a vector φ(x̄i , p̄i , s̄′) in the vector space R

n based on each
instance (x̄i , p̄i ) in the training set T and each possible timing sequence s̄′. Second, we find
a vector w ∈ R

n, such that the projection of vectors onto w ranks the vectors constructed in
the first step above according to their quality. Ideally, for each instance (x̄i , p̄i) and for each
possible suggested timing sequence s̄′, we would like the following constraint to hold:

w · φ(x̄i , p̄i , s̄i )− w · φ(x̄i , p̄i , s̄′)≥ γ (s̄i , s̄′). (4.3)

That is, w should rank the correct timing sequence s̄i above any other possible tim-
ing sequence s̄′ by at least γ (s̄i , s̄′). We refer to the difference w · φ(x̄i , p̄i , s̄i )− w ·
φ(x̄i , p̄i , s̄′) as the margin of w with respect to the sequence s̄′. Note that if the prediction
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of w is incorrect then the margin is negative. The constraints in Equation (4.3) imply that
the margin of w with respect to any possible timing sequence s̄′ should be at least the cost
of predicting s̄′ instead of the true timing sequence s̄i . Naturally, if w ranks the different
possible timing sequences correctly, the margin requirements given in Equation (4.3) can be
satisfied by simply multiplying w by a large scalar. The SVM algorithm solves this problem
by minimizing 1

2‖w‖2 subject to the constraints given in Equation (4.3).
In practice, it might be the case that the constraints given in Equation (4.3) cannot be

satisfied. To overcome this obstacle, we follow the soft SVM approach and define the
following hinge loss function for alignment:

�(w; (x̄i , p̄i , s̄i))=max
s̄ ′

[
γ (s̄i , s̄

′)− w · (φ(x̄i , p̄i , s̄i )− φ(x̄i, p̄i , s̄′))
]
+, (4.4)

where [a]+ =max{0, a}. The hinge loss measures the maximal violation of any of the
constraints given in Equation (4.3). The soft SVM approach for forced alignment is to choose
the vector w�, which minimizes the following optimization problem:

min
w,ξ≥0

1

2
‖w‖2 + C

m∑
i=1

ξi (4.5)

s.t. w · φ(x̄i , p̄i , s̄i )− w · φ(x̄i , p̄i , s̄′)≥ γ (s̄i , s̄′)− ξi ∀i, s̄′,

where the parameter C serves as a complexity–accuracy trade-off parameter (see Cristianini
and Shawe-Taylor 2000) and each ξi is a non-negative slack variable that indicates the loss
of the ith example.

Solving the quadratic optimization problem given in Equation (4.5) is complicated
since the number of constraints is exponentially large. Several authors suggested specific
algorithms for manipulating the exponential number of constraints (Taskar et al. 2003;
Tsochantaridis et al. 2004). However, these methods are problematic when the size of the
dataset is very large since several passes over the data are required. In the next section, we
propose an alternative method, which visits each example only once.

4.5 An Iterative Algorithm

In this section we describe an iterative algorithm for learning an alignment function,
parameterized by w. Our iterative algorithm first constructs a sequence of weight vectors
w1, . . . , wm, wm+1. The first weight vector is set to be the zero vector, w1 = 0. On iteration
i of the algorithm, we utilize the ith example of the training set along with the previous
weight vector wi , for defining the next weight vector wi+1 as follows. Let s̄′i be the timing
sequence, which corresponds to the highest violated margin constraint of the ith example
according to wi , that is:

s̄′i = arg max
s̄
γ (s̄, s̄i)− wi · (φ(x̄i, p̄i , s̄i)− φ(x̄i , p̄i , s̄)). (4.6)

In Section 4.6 we provide an algorithm that efficiently calculates the above optimization
problem using dynamic programming. We set the next weight vector wi+1 to be the
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minimizer of the following optimization problem:

min
w∈Rn,ξ≥0

1

2
‖w− wi‖2 + Cξ (4.7)

s.t. w · φ(x̄i , p̄i , s̄i )− w · φ(x̄i , p̄i , s̄′i )≥ γ (s̄i , s̄′i )− ξ.
This optimization problem can be thought of as a relaxed version of the SVM optimization
problem with two major differences. First, we replace the exponential number of constraints
from Equation (4.5) with a single constraint. This constraint is based on the timing sequence
s̄′i defined in Equation (4.6). Second, we replaced the term ‖w‖2 in the objective function
of the SVM with the term ‖w− wi‖2. Intuitively, we would like to minimize the loss of w
on the current example, i.e. the slack variable ξ , while remaining as close as possible to our
previous weight vector wi .

The solution to the optimization problem in Equation (4.7) has a simple closed form
solution:

wi+1 = wi +min

{
�i

‖�φi‖2
, C

}
·�φi ,

where �φi = φ(x̄i , p̄i , s̄i )− φ(x̄i, p̄i , s̄′i ) and �i = �(wi; (xi , p̄i , s̄i )). We now show how
this update is derived using standard tools from convex analysis (see for instance Boyd and
Vandenberghe (2004)). If �i = 0 then wi itself satisfies the constraint in Equation (4.7) and is
clearly the optimal solution. If �i > 0 we derive these updates by defining the Lagrangian
of the respective optimization problem and satisfying the Karush–Khun–Tucker (KKT)
conditions (Boyd and Vandenberghe 2004). The Lagrangian of the optimization problem is

L(w, ξ, τ, λ)= 1
2‖w− wi‖2 + Cξ + τ (γ (s̄i , s̄′i )− ξ − w ·�φi )− λξ, (4.8)

where τ ≥ 0 and λ≥ 0 are Lagrange multipliers. Setting the partial derivatives of L with
respect to the elements of w to zero gives

0=∇wL(w, ξ, τ, λ)= w− wi − τ�φi =⇒ w= wi + τ�φi . (4.9)

Differentiating the Lagrangian with respect to ξ and setting that partial derivative to zero
gives

0= ∂L(w, ξ, τ, λ)
∂ξ

= C − τ − λ =⇒ C = τ + λ. (4.10)

The KKT conditions require λ to be non-negative so we conclude that τ ≤ C. We now
discuss two possible cases: if �i/‖�φi‖2 ≤ C then we can plug Equation (4.10) back
into Equation (4.8) and get τ = �i/‖�φi‖2. The other case is when �i/‖�φi‖2 > C. This
condition can be rewritten as

C‖�φi‖2 < γ (s̄i, s̄
′
i )− ξ − w ·�φi . (4.11)

We also know that the constraint in Equation (4.7) must hold at the optimum, so w ·
�φi ≥ γ (s̄i , s̄′i )− ξ . Using the explicit form of w given in Equation (4.9), we can rewrite
this constraint as wi ·�φi + τ‖�φi‖2 ≥ γ (s̄i , s̄′i )− ξ . Combining this inequality with the
inequality in Equation (4.11) gives

C‖�φi‖2 − τ‖�φi‖< ξ.
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We now use our earlier conclusion that τ ≤ C to obtain 0< ξ . Turning to the KKT
complementarity condition, we know that ξλ = 0 at the optimum. Having concluded that
ξ is strictly positive, we get that λ must equal zero. Plugging λ= 0 into Equation (4.10)
gives τ = C. Summing up, we used the KKT conditions to show that in the case where
�i/‖�φi‖2 >C, it is optimal to select τ = C. Folding all of the possible cases into a single
equation, we get

τ =min{C, �i/‖�φi‖2}. (4.12)

The above iterative procedure gives us a sequence of m+ 1 weight vectors, w1, . . . ,

wm+1. In the sequel we prove that the average performance of this sequence of vectors is
comparable to the performance of the SVM solution. Formally, let w� be the optimum of the
SVM problem given in Equation (4.5). Then, we show in the sequel that setting C = 1/

√
m

gives

1

m

m∑
i=1

�(wi; (x̄i, p̄i , s̄i)) ≤ 1

m

m∑
i=1

�(w�; (x̄i , p̄i , s̄i ))+ 1√
m

(
‖w�‖2 + 1

2

)
. (4.13)

That is, the average loss of our iterative procedure is upper bounded by the average loss
of the SVM solution plus a factor that decays to zero. However, while each prediction of
our iterative procedure is calculated using a different weight vector, our learning algorithm
is required to output a single weight vector, which defines the output alignment function.
To overcome this obstacle, we calculate the average cost of each of the weight vectors
w1, . . . , wm+1 on a validation set, denoted Tvalid, and choose the one achieving the lowest
average cost. We show in the sequel that with high probability, the weight vector which
achieves the lowest cost on the validation set also generalizes well. A pseudo-code of our
algorithm is given in Figure 4.2.

Input: training set T = {(x̄i, p̄i , s̄i)}mi=1; validation set Tvalid; parameter C

Initialize: w1 = 0

For i = 1, . . . , m

Predict: s̄′i = arg max
s̄
γ (s̄i , s̄)− wi · φ(x̄i , p̄i , s̄i)+ wi · φ(x̄i , p̄i , s̄)

Set: �φi = φ(x̄i , p̄i , s̄i )− φ(x̄i , p̄i , s̄′i )
Set: �i =max{γ (s̄i , s̄′i )− w ·�φi , 0}
Update: wi+1 = wi +min{�i/‖�φi‖2, C}�φi

Output: The weight vector which achieves the lowest average cost on the validation set
Tvalid.

Figure 4.2 The forced alignment algorithm.
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We now analyze our alignment algorithm from Figure 4.2. Our first theorem shows that
the average loss of our alignment algorithm is comparable to the average loss of the SVM
solution for the alignment problem defined in Equation (4.5).

Theorem 4.5.1 Let T = {(x̄1, p̄1, s̄1), . . . , (x̄m, p̄m, s̄m)} be a set of training examples and
assume that for all i and s̄′ we have that ‖φ(x̄i , p̄i , s̄′)‖ ≤ 1/2. Let w� be the optimum of
the SVM problem given in Equation (4.5). Let w1, . . . , wm be the sequence of weight vectors
obtained by the algorithm in Figure 4.2 given the training set T . Then,

1

m

m∑
i=1

�(wi; (x̄i , p̄i , s̄i )) ≤ 1

m

m∑
i=1

�(w�; (x̄i , p̄i , s̄i))+ 1

Cm
‖w�‖2 + 1

2
C. (4.14)

In particular, if C = 1/
√
m then

1

m

m∑
i=1

�(wi; (x̄i , p̄i , s̄i)) ≤ 1

m

m∑
i=1

�(w�; (x̄i, p̄i , s̄i))+ 1√
m

(
‖w�‖2 + 1

2

)
. (4.15)

Proof. Our proof relies on Theorem 2 in Shalev-Shwartz and Singer (2006). We first
construct a sequence of binary classification examples, (�φ1,+1), . . . , (�φm,+1). For
all i and for all w ∈R

n, define the following classification hinge loss:

�ci (w)=max{γ (s̄i , s̄′i )− w ·�φi , 0}.
Theorem 2 in Shalev-Shwartz and Singer (2006) implies that the following bound holds for
all w ∈ R

n:
m∑
i=1

µ(�ci (wi ))≤
1

C
‖w‖2 +

m∑
i=1

�ci (w), (4.16)

where

µ(a)= 1

C

(
min{a, C}

(
a − 1

2
min{a, C}

))
.

Let w� denote the optimum of the alignment problem given by Equation (4.5). The bound of
Equation (4.16) holds for any w and in particular for the optimal solution w�. Furthermore,
the definition of �ci implies that �ci (w

�)≤ �(w�; (x̄i , p̄i , s̄i)) and �ci (wi )= �(wi; (x̄i , p̄i , s̄i ))
for all i. Using the latter two facts in Equation (4.16) gives that

m∑
i=1

µ(�(wi; (x̄i , p̄i , s̄i))) ≤ 1

C
‖w�‖2 +

m∑
i=1

�(w�; (x̄i, p̄i , s̄i)). (4.17)

By definition, the function µ is bounded below by a linear function, that is, for any a > 0,

µ(a)≥ a − 1
2C.

Using the lower bound with the argument �(wi; (x̄i , p̄i , s̄i )) and summing over i we obtain

m∑
i=1

�(wi; (x̄i , p̄i , s̄i ))− 1

2
Cm ≤

m∑
i=1

µ(�(wi; (x̄i , p̄i , s̄i))).

Combining the above inequality with Equation (4.17) and rearranging terms gives the bound
stated in the theorem and concludes our proof. �
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The next theorem tells us that the output alignment function of our algorithm is likely to
have good generalization properties.

Theorem 4.5.2 Under the same conditions of Theorem 4.5.1. assume that the training set T
and the validation set Tvalid are both sampled i.i.d. from a distribution D. Denote by mvalid
the size of the validation set. Assume in addition that γ (s̄, s̄′)≤ 1 for all s̄ and s̄′. Let w
be the output weight vector of the algorithm in Figure 4.2 and let fw be the corresponding
alignment function. Then, with probability of at least 1− δ we have that

risk(fw)≤ 1

m

m∑
i=1

�(w�; (x̄i , p̄i , s̄i))+ ‖w
�‖2 + 1

2 +
√

2 ln(2/δ)√
m

+
√

2 ln(2m/δ)√
mvalid

. (4.18)

Proof. Denote by f1, . . . , fm the alignment prediction functions corresponding to the
weight vectors w1, . . . , wm that are found by the alignment algorithm. Proposition 1 in Cesa-
Bianchi et al. (2004) implies that with probability of at least 1− δ1 the following bound
holds:

1

m

m∑
i=1

risk(fi) ≤ 1

m

m∑
i=1

γ (s̄i , fi(x̄i , p̄i ))+
√

2 ln(1/δ1)√
m

.

By definition, the hinge loss �(wi; (x̄i, p̄i , s̄i)) bounds from above the loss γ (s̄i , fi(x̄i , p̄i)).
Combining this fact with Theorem 4.5.1 we obtain that

1

m

m∑
i=1

risk(fi)≤ 1

m

m∑
i=1

�(w�; (x̄i , p̄i , s̄i ))+ ‖w
�‖2 + 1

2 +
√

2 ln(1/δ1)√
m

. (4.19)

The left-hand side of the above inequality upper bounds risk(fb), where b = arg mini
risk(fi). Therefore, among the finite set of alignment functions, F = {f1, . . . , fm}, there
exists at least one alignment function (for instance the function fb) whose true risk is bounded
above by the right-hand side of Equation (4.19). Recall that the output of our algorithm is the
alignment function fw ∈ F , which minimizes the average cost over the validation set Tvalid.
Applying Hoeffding inequality together with the union bound over F we conclude that with
probability of at least 1− δ2,

risk(fw)≤ risk(fb)+
√

2 ln(m/δ2)

mvalid
,

where to remind the reader mvalid = |Tvalid|. We have therefore shown that with probability
of at least 1− δ1 − δ2 the following inequality holds:

risk(fw)≤ 1

m

m∑
i=1

�(w�; (x̄i , p̄i , s̄i ))+ ‖w
�‖2 + 1

2 +
√

2 ln(1/δ1)√
m

+
√

2 ln(m/δ2)√
mvalid

.

Setting δ1 = δ2 = δ/2 concludes our proof. �
As mentioned before, the learning algorithm we present in this chapter share similarities

with the SVM method for structured output prediction (Taskar et al. 2003; Tsochantaridis
et al. 2004). Yet, the weight vector resulted by our method is not identical to the one obtained
by directly solving the SVM optimization problem. We would like to note in passing that our
generalization bound from Theorem 4.5.2 is comparable to generalization bounds derived for
the SVM method (see for example Taskar et al. (2003)). The major advantage of our method
over directly solving the SVM problem is its simplicity and efficiency.
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4.6 Efficient Evaluation of the Alignment Function

So far we have put aside the problem of evaluation time of the function f given in
Equation (4.2). Recall that calculating f requires solving the following optimization prob-
lem:

f (x̄, p̄)= arg max
s̄

w · φ(x̄, p̄, s̄).
Similarly, we need to find an efficient way for solving the maximization problem given in
Equation (4.6). A direct search for the maximizer is not feasible since the number of possible
timing sequences, s̄, is exponential in the number of events. Fortunately, as we show below,
by imposing a few mild conditions on the structure of the alignment feature functions and on
the cost function, γ , both problems can be solved in polynomial time.

We start with the problem of calculating the prediction given in Equation (4.2). For
simplicity, we assume that each base feature function, φj , can be decomposed as follows.
Let φ̂j be any function from X ∗ × P∗ ×N

3 into the reals, which can be computed in a
constant time. That is, φ̂j receives as input the signal, x̄, the sequence of events, p̄, and three
time points. Additionally, we use the convention s0 = 0 and s|p̄|+1 = T + 1. Using the above
notation, we assume that each φj can be decomposed to be

φj (x̄, p̄, s̄)=
|s̄|−1∑
i=2

φ̂j (x̄, p̄, si−1, si , si+1). (4.20)

The base alignment functions we derive in the next section can be decomposed as in
Equation (4.20).

We now describe an efficient algorithm for calculating the best timing sequence assuming
that φj can be decomposed as in Equation (4.20). Similar algorithms can be constructed
for any base feature functions that can be described as a dynamic Bayesian network (Dean
and Kanazawa 1989; Taskar et al. 2003). Given i ∈ {1, . . . , |p̄|} and two time indices t, t ′ ∈
{1, . . . , T }, denote by ρ(i, t, t ′) the score for the prefix of the events sequence 1, . . . , i,
assuming that their actual start times are s1, . . . , si , where si = t ′ and assuming that si+1 = t .
This variable can be computed efficiently in a similar fashion to the forward variables
calculated by the Viterbi procedure in HMMs (see for instance Rabiner and Juang (1993)).
The pseudo-code for computing ρ(i, t, t ′) recursively is shown in Figure 4.3. The best
sequence of actual start times, s̄′, is obtained from the algorithm by saving the intermediate
values that maximize each expression in the recursion step. The complexity of the algorithm
is O(|p̄| |x̄|3). However, in practice, we can use the assumption that the maximal length of
an event is bounded, t − t ′ ≤ L. This assumption reduces the complexity of the algorithm to
be O(|p̄| |x̄| L2).

Solving the maximization problem given in Equation (4.6) can be performed in a similar
manner as we now briefly describe. Assume that γ (s̄, s̄′) can be decomposed as follows:

γ (s̄, s̄′)=
|s̄|∑
i=1

γ̂ (si , s
′
i ),

where γ̂ is any computable function. For example, for the definition of γ given in
Equation (4.1) we can set γ̂ (si , s′i ) to be zero if |si − s′i | ≤ ε and otherwise γ̂ (si, s′i )= 1/|s̄|.
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Input: audio signal x̄; sequence of phonemes p̄ ; weight vector w ; maximum phoneme duration L
Initialize:
ρ(0, t, 0)= 0, 1≤ t ≤ L
ς(0, t, 0)= 0, 1≤ t ≤ L

Recursion:
For i = 1, . . . , |p̄|

For t = 1, . . . , |x̄|
For t ′ = t − L, . . . , t − 1

If t − L≥ 0
ρ(i, t, t ′)=max

t ′′
ρ(i−1, t ′, t ′′)+ w · φ̂(x̄, p̄, t ′′, t ′, t)

ς(i, t, t ′)= arg max
t ′′

ρ(i−1, t ′, t ′′)+ w · φ̂(x̄, p̄, t ′′, t ′, t)
Termination:
ρ� =max

t ′
ρ(|p̄|, T , t ′)

s�|p̄|+1 = T
s�|p̄| = arg max

t ′
ρ(|p̄|, T , t ′)

Path backtracking:
s�i = ς(i + 1, s�i+2, s

�
i+1), i = |p̄| − 2, |p̄| − 3, . . . , 1

Figure 4.3 An efficient procedure for evaluating the alignment function.

A dynamic programming procedure for calculating Equation (4.6) can be obtained from
Figure 4.3 by replacing the recursion definition of ρ(i, t, t ′) to

ρ(i, t, t ′)=max
t ′′

ρ(i − 1, t ′, t ′′)+ γ̂ (si+1, t)+ w · φ̂(x̄, p̄, t ′′, t ′, t). (4.21)

To conclude this section we discuss the global complexity of our proposed method. In the
training phase, our algorithm performsm iterations, one iteration per each training example.
At each iteration the algorithm evaluates the alignment function once, updates the alignment
function, if needed, and evaluates the new alignment function on a validation set of size
mvalid. Each evaluation of the alignment function takes an order of O(|p̄| |x̄| L2) operations.
Therefore the total complexity of our method becomes O(m mvalid |p̄| |x̄| L2). In practice,
however, we can evaluate the updated alignment function only for the last 50 iterations or
so, which reduces the global complexity of the algorithm to O(m |p̄| |x̄| L2). In all of our
experiments, evaluating the alignment function only for the last 50 iterations was found
empirically to give sufficient results. Finally, we compare the complexity of our method to
the complexity of other algorithms which directly solve the SVM optimization problem given
in Equation (4.5). The algorithm given in Taskar et al. (2003) is based on the SMO algorithm
for solving SVM problems. While there is no direct complexity analysis for this algorithm,
in practice it usually required at least m2 iterations, which results in a total complexity of
the order O(m2 |p̄| |x̄| L2). The complexity of the algorithm presented in Tsochantaridis
et al. (2004) depends on the choice of several parameters. For reasonable choice of these
parameters the total complexity is also of the orderO(m2 |p̄| |x̄| L2).
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4.7 Base Alignment Functions

Recall that our construction is based on a set of base alignment functions, {φj }nj=1, which
maps an acoustic–phonetic representation of a speech utterance as well as a suggested
phoneme start time sequence into an abstract vector-space. All of our base alignment
functions are decomposable as in Equation (4.20) and therefore it suffices to describe the
functions {φ̂j }. We start the section by introducing a specific set of base functions, which
is highly adequate for the forced alignment problem. Next, we report experimental results
comparing our algorithm with alternative state-of-the-art approaches.

We utilize seven different base alignment functions (n= 7). These base functions are used
for defining our alignment function f (x̄, p̄) as in Equation (4.2).

Our first four base functions aim at capturing transitions between phonemes. These base
functions are based on the distance between frames of the acoustical signal at two sides
of phoneme boundaries as suggested by a phoneme start time sequence s̄. The distance
measure we employ, denoted by d , is the Euclidean distance between feature vectors. Our
underlying assumption is that if two frames, xt and xt ′ , are derived from the same phoneme
then the distance d(xt , xt ′) should be smaller than if the two frames are derived from different
phonemes. Formally, our first four base functions are defined as

φ̂j (x̄, p̄, si−1, si, si+1)= d(xsi−j , xsi+j ), j ∈ {1, 2, 3, 4}. (4.22)

If s̄ is the correct timing sequence then distances between frames across the phoneme change
points are likely to be large. In contrast, an incorrect phoneme start time sequence is likely to
compare frames from the same phoneme, often resulting in small distances. Note that the first
four base functions described above only use the start time of the ith phoneme and do not use
the values of si−1 and si+1. A schematic illustration of this base function form is depicted in
Figure 4.4.

The fifth base function we use is based on the framewise phoneme classifier described
in Dekel et al. (2004). Formally, for each phoneme p ∈ P and frame x ∈ X , there is a
confidence, denoted gp(x), that the phoneme p is pronounced in the frame x. The resulting

si−j + si j + si

Figure 4.4 A schematic description of one of the first four base functions. The depicted base
function is the sum of the Euclidean distances between the sum of two frames before and
after any presumed boundary si .
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. . .. . . . . .

sisi−1 si+1

pi−1 = t pi = eh

Figure 4.5 A schematic description of the fifth base function. This function is the sum of
all the scores obtained from a large margin classifier, given a sequence of phonemes and a
presumed sequence of start times.

base function measures the cumulative confidence of the complete speech signal given the
phoneme sequence and their start-times:

φ̂5(x̄, p̄, si−1, si, si+1)=
si+1−1∑
t=si

gpi (xt ). (4.23)

The fifth base function use both the start time of the ith phoneme and the (i + 1)th phoneme
but ignores si−1. A schematic illustration of the fifth base function is depicted in Figure 4.5.

Our next base function scores timing sequences based on phoneme durations. Unlike the
previous base functions, the sixth base function is oblivious to the speech signal itself. It
merely examines the length of each phoneme, as suggested by s̄, compared with the typical
length required to pronounce this phoneme. Formally:

φ̂6(x̄, p̄, si−1, si, si+1)= log N (si+1 − si; µ̂pi , σ̂pi ), (4.24)

when N is a Normal probability density function with mean µ̂p and standard deviation σ̂p,
representing the average and standard deviation of the duration of phoneme p, respectively.
In our experiments, we estimated µ̂p and σ̂p from the entire TIMIT training set, excluding
SA1 and SA2 utterances. A schematic illustration of the sixth base function is depicted in
Figure 4.6.

Our last base function exploits assumptions on the speaking rate of a speaker. Intuitively,
people usually speak at an almost steady rate and therefore a timing sequence in which
speech rate is changed abruptly is probably incorrect. Formally, let µ̂p be the average
duration required to pronounce the pth phoneme. We denote by ri the relative speech rate,
ri = (si+1 − si)/µ̂p. That is, ri is the ratio between the actual length of phoneme pi as
suggested by s̄ and its average length. The relative speech rate presumably changes slowly
over time. In practice the speaking rate ratios often differ from speaker to speaker and within
a given utterance. We measure the local change in the speaking rate as (ri − ri−1)

2 and we
define the base function φ̂7 as the local change in the speaking rate:

φ̂7(x̄, p̄, si−1, si, si+1)= (ri − ri−1)
2. (4.25)

Note that φ̂7 relies on all three start times it receives as an input, si−1, si , si+1.
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si − si−1 si+1 − si

Figure 4.6 A schematic description of the sixth base function. This function is the sum of
the confidences in the duration of each phoneme given its presumed start time.

4.8 Experimental Results

In this section we present experimental results that demonstrate the accuracy and robustness
of our algorithm. We performed experiments on read speech using the TIMIT corpus
(originally sampled at 16 kHz), TIMIT corpus sampled at 8 kHz, and on HTIMIT. In all
the experiments, the baseline discriminative system and HMM system were trained on the
clean read-speech TIMIT corpus with a set of 48 phonemes defined by Lee and Hon (1989).
We first divided the training portion of TIMIT (excluding the SA1 and SA2 utterances) into
three disjoint parts containing 500, 100 and 3093 utterances, respectively. The first part of the
training set was used for learning the functions gp (Equation (4.23)), which defines the base
function ψ5. The second and the third sets of 100 and 3096 utterances formed the validation
set and training set for the forced alignment algorithm, respectively.

First, the functions gp were trained using the algorithm described in Dekel et al. (2004)
with MFCC+�+�� acoustic features and a Gaussian kernel (the parameters σ = 4.3 and
C = 1.0 were chosen on the validation set). Note that the functions gp are far from being
a fine phoneme classifier, since using the functions gp as a frame-based phoneme classifier
resulted in classification accuracy of 55% per frame on the TIMIT core test set, comparing
with almost 70% using Multilayer Perception (MLP) (Pinto and Hermansky 2008).

Second, we ran our iterative alignment algorithm as described in Section 4.5 on the
training and validation sets with value of ε in the definition of γ equals to 1, i.e. 10 ms.

We evaluated the trained forced aligner on the core test set of TIMIT. We compare
our results with the results reported by Brugnara et al. (1993) and the results reported by
Hosom (2002), which are considered to be the state-of-the-art forced aligners. The results
are summarized in Table 4.1. For each tolerance value τ ∈ {10 ms, 20 ms, 30 ms, 40 ms}, we
counted the number of predictions whose distance to the true boundary, t = |yi − y ′i |, is less
than τ . As can be seen in the table our discriminative large margin algorithm outperforms the
best results reported on TIMIT so far. Furthermore, we found out in our experiments that the
algorithm converges after the first 50 utterances.

The TIMIT is originally sampled at 16 kHz, but we also trained and checked the
discriminative model on TIMIT sub-sampled at 8 kHz. This was done to evaluate the
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Table 4.1 Percentage of correctly positioned phoneme boundaries, given a predefined
tolerance on the TIMIT corpus

t ≤ 10 ms t ≤ 20 ms t ≤ 30 ms t ≤ 40 ms

TIMIT core test-set (16 kHz)
Discriminative alignment 84.2 93.3 96.7 98.4
Brugnara et al. (1993) 75.3 88.9 94.4 97.1
Hosom (2002) 92.6

TIMIT core test-set (8 kHz)
Discriminative alignment 84.0 93.1 96.7 98.3

HTIMIT CB1 834 utterances
Discriminative alignment 71.2 89.5 94.8 96.9

performance of the algorithm on a more realistic sampling rate and to use the model trained
on the sub-sampled TIMIT on other corpora sampled at 8 kHz. The results are presented
in Table 4.1. We can see that the results for TIMIT sub-sampled at 8 kHz still outperforms
the results reported by Brugnara et al. (1993) and by Hosom (2002).

In the next experiments we examined the robustness of the proposed algorithm to different
environments. We used the model trained on TIMIT but we tested it on different corpora
without any further training or adaptation. First we checked the discriminative model on the
HTIMIT corpus (Reynolds 1997). The HTIMIT corpus was generated by playing the TIMIT
speech through a loudspeaker into a different set of phone handsets. We used the model
trained on TIMIT sampled at 8 kHz and tested it on the CB1 portion of the HTIMIT corpus.
We see that there is a degradation in the results compared with the clean speech as expected,
especially for τ ≤ 10 ms. The overall results, however, are reasonable given that we did not
re-train or adapt the model to the new environment.

4.9 Discussion

We described and experimented with a discriminative method for phoneme forced alignment.
The proposed approach is based on recent advances in large margin classifiers. Our training
algorithm is simple to implement and entertains convergence guarantees. In contrast to HMM
training procedures, which are prone to local maxima variabilities, our proposed algorithm
is guaranteed to converge to a solution which has good generalization properties under mild
conditions. Indeed, the experiments reported above suggest that the discriminative training
requires fewer training examples than an HMM-based alignment procedure while achieving
the best reported results for this task.
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5

A Kernel Wrapper for Phoneme
Sequence Recognition

Joseph Keshet and Dan Chazan

We describe a kernel wrapper, a Mercer kernel for the task of phoneme sequence recognition
which is based on operations with the Gaussian kernel, and suitable for any sequence kernel
classifier. We start by presenting a kernel based algorithm for phoneme sequence recognition,
which aims at minimizing the Levenshtein distance (edit distance) between the predicted
phoneme sequence and the true phoneme sequence. Motivated by the good results of frame
based phoneme classification using Support Vector Machines (SVMs) with Gaussian kernel,
we devised a kernel for speech utterances and phoneme sequences which generalizes the
kernel function for phoneme frame based classification and adds timing constraints in the
form of transition and duration constraints. The kernel function has three parts corresponding
to phoneme acoustic model, phoneme duration model and phoneme transition model. We
present initial encouraging experimental results with the TIMIT corpus.

5.1 Introduction

Kernel based algorithms enable to exploit a set of nonlinear feature functions which can
replace the traditional probability function estimations, such as those used in Hidden Markov
Models (HMMs). Moreover, they enable the use of phoneme specific feature functions
to define the special properties of each phoneme. For example, a special time-frequency
resolution can be used for the acoustic feature of the stop consonants, and a generic time-
frequency resolution can be used for the rest of the phonemes. The feature functions do not
have to be probabilities and can be nonlinear by using Mercer kernels (Vapnik 1998).

In this chapter we devise a new set of Mercer kernels for phoneme sequence recognition.
The kernel functions are specifically designed for prediction of phoneme sequences given

Au tomatic Speech and Speaker R ecognition: Large Margin and Ker n el Methods Edited by Joseph Keshet 
and Samy Bengio © 2009 John Wiley & Sons, Ltd. ISBN: 978-0-470-69683-5
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acoustic feature vectors, and can be used with any sequence prediction kernel based classifier,
such as the structured SVM algorithm (Taskar et al. 2003; Tsochantaridis et al. 2005). In
parallel to the HMM phoneme recognizers, the kernel function has three parts corresponding
to phoneme acoustic model, phoneme duration model and phoneme transition model.

Although our kernel functions can be used with any sequence prediction kernel based
algorithm, we used them here with a kernel based algorithm which aims at minimizing the
Levenshtein distance between the model based predicted phoneme sequence and the correct
one (Keshet et al. 2006). We show that this algorithm has good performance on the test data
both theoretically and empirically. Most previous work on phoneme sequence recognition
has focused on HMMs. See for example Chapter 7 and the many references therein. These
models are all based on probability estimations and maximization of the sequence likelihood
and they are not trained to minimize the Levenshtein distance, the cost usually used to assess
the quality of phoneme sequence prediction.

The chapter is organized as follows. In Section 5.2 we formally introduce the phoneme
sequence recognition problem. Our kernel wrapper is designed to extend the frame based
phoneme classifier which is presented in Section 5.3. Next, a kernel based iterative algorithm
which minimizes the Levenshtein distance is given in Section 5.4. In Section 5.5 we present
the kernel functions used for phoneme recognition. Preliminary experimental results are
given in Section 5.6. We conclude the chapter with a discussion in Section 5.7.

5.2 Problem Setting

In the problem of phoneme sequence recognition, we are given a speech utterance and our
goal is to predict the phoneme sequence corresponding to it. We represent a speech signal
as a sequence of acoustic feature-vectors x̄= (x1, . . . , xT ), where xt ∈ X for all 1≤ t ≤
T . Each utterance corresponds to a sequence of phoneme symbols. Formally, we denote
each phoneme symbol by p ∈ P , where P is a set of phoneme symbols, and we denote the
sequence of phoneme symbols by p̄ = (p1, . . . , pL). Furthermore, we denote by sl ∈N the
start time of phoneme pl (in frame units) and we denote by s̄ = (s1, . . . , sL) the sequence
of phoneme start-times, which corresponds to the phoneme sequence p̄. Naturally, the length
of the speech signal and hence the number of phonemes varies from one utterance to another
and thus T and L are not fixed. We denote by P∗ (and similarly X ∗ and N

∗) the set of all
finite-length sequences over P . Our goal is to learn a function f that predicts the correct
phoneme sequence given an acoustic sequence. That is, f is a function from X ∗ to the set
of finite-length sequences over the domain of phoneme symbols, P∗. We also refer to f as a
phoneme sequence recognizer or predictor.

The ultimate goal of the phoneme sequence prediction is usually to minimize the
Levenshtein distance between the predicted sequence and the correct one. The Levenshtein
distance (also called edit distance) is a string metric. The Levenshtein distance between two
strings is given by the minimum number of operations needed to transform one string into
the other, where the allowed operations are insertion, deletion, or substitution of a single
character. For example, the Levenshtein distance between kitten and sitting is three, since
these three edits change one into the other, and there is no way to do it with fewer than
three edits (two substitutions and one insertion). The best known use of the Levenshtein
distance is in the application of spellcheck. However, it is also used to assess the quality of
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predicting a phoneme sequence (Lee and Hon 1989) or to compute the word error rate in
speech recognition. Throughout this chapter we denote by γ (p̄, p̄′) the Levenshtein distance
between the predicted phoneme sequence p̄′ and the true phoneme sequence p̄.

5.3 Frame-based Phoneme Classifier

Before describing the kernel based phoneme recognizer let us take a brief detour and describe
a kernel based phoneme classifier. A phoneme classifier is a function g : X × P→ R, which,
given a vector of acoustic features xt ∈ X extracted from the t th frame and a phoneme symbol
pt , returns a score indicating the confidence that the phoneme pt is uttered at the t th frame.
Note that throughout this chapter we denote by pl the lth phoneme is the sequence p̄, and by
pt the phoneme uttered at the tth frame.

In hybrid Artificial Neural Network (ANN) and HMM systems (Bourlard and Morgan
1994) the front-end estimates the posterior phoneme conditional probability density func-
tions over the phoneme set on a frame-by-frame basis using Multilayer Perceptron (MLP),
that is, g is defined to return a score in the simplex [0, 1] rather than in R. Those posteriors are
then decoded into a word sequence using the HMM Viterbi decoding. Analogously, Salomon
et al. (2002) used an SVM to classify speech frames with the one-versus-one scheme, where
one classifier is trained for every possible pair of phonemes, resulting in |P |(|P | − 1)/2
classifiers. The reported results for framewise accuracy were around 71%.

A more modern approach for multiclass SVM classification (Crammer and Singer 2001)
uses the following classification scheme instead of one-versus-one (or one-versus-rest):

p̂t = arg max
p

g(xt , p)= arg max
p

wp · xt , (5.1)

where wp will be referred to as the prototype of phoneme p. This type of classifier finds the
projection of the speech frame instance xt over the prototypes of all phonemes p ∈ P , and
predicts the one with the highest score wp · xt . The difference between this method and other
methods which reduce the multiclass problem into a set of binary problems is that in this
method all the prototypes wp are trained jointly to minimize the multiclass error. Motivated
by the good accuracy of these frame based methods, we describe a kernel wrapper for a whole
phoneme sequence prediction. Before describing the kernel wrapper we describe briefly an
efficient kernel based algorithm for phoneme recognition.

5.4 Kernel-based Iterative Algorithm for Phoneme
Recognition

In this section we describe a discriminative supervised learning algorithm for learning
a phoneme sequence recognizer f from a training set of examples. This algorithm was
published elsewhere (Keshet et al. 2006), and it is given here only for completeness. Each
example in the training set is composed of an acoustic signal, x̄, a sequence of phonemes, p̄,
and a sequence of phoneme start-times, s̄.

Our construction is based on a predefined vector feature function φ : X � × (P ×N)∗ →
H, where H is a reproducing kernel Hilbert space (RKHS). Thus, the input of this function
is an acoustic representation, x̄, together with a candidate phoneme symbol sequence p̄ and a
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candidate phoneme start time sequence s̄. The feature function returns a vector in H, where,
intuitively, each element of the vector represents the confidence in the suggested phoneme
sequence. For example, one element of the feature function can sum the number of times
phonemep comes after phonemep′, while other elements of the feature function may extract
properties of each acoustic feature vector xt provided that phoneme p was pronounced at
time t . The description of the concrete form of the feature function is deferred to Section 5.5.

Our goal is to learn a phoneme sequence recognizer f , which takes as input a sequence of
acoustic features x̄ and returns a sequence of phoneme symbols p̄. The form of the function
f we use is

f (x̄)= arg max
p̄

(
max
s̄

w · φ(x̄, p̄, s̄)), (5.2)

where w ∈H is a vector of importance weights that should be learned. In words, f returns a
suggestion for a phoneme sequence by maximizing a weighted sum of the scores returned by
the feature function elements. Learning the weight vector w is analogous to the estimation of
the parameters of the local probability functions in HMMs. Our approach, however, does not
require w to take a probabilistic form. The maximization defined by Equation (5.2) is over an
exponentially large number of all possible phoneme sequences. Nevertheless, as in HMMs, if
the feature function, φ, is decomposable, the optimization in Equation (5.2) can be efficiently
calculated using a dynamic programming procedure.

We now describe a simple iterative algorithm for learning the weight vector w. The
algorithm receives as input a training set T = {(x̄1, p̄1, s̄1), . . . , (x̄m, p̄m, s̄m)} of examples.
Initially we set w= 0. At each iteration the algorithm updates w according to the ith example
in T as we now describe. Denote by wi−1 the value of the weight vector before the ith
iteration. Let (p̄′i , s̄′i ) be the predicted phoneme sequence for the ith example according to
wi−1:

(p̄′i , s̄′i )= arg max
(p̄,s̄)

wi−1 · φ(x̄i , p̄, s̄). (5.3)

We set the next weight vector wi to be the minimizer of the following optimization problem:

wi = arg min
w∈H,ξ≥0

1
2‖w− wi−1‖2 + Cξ

s.t. w · φ(x̄i , p̄i , s̄i )− w · φ(x̄i , p̄′i , s̄′i )≥ γ (p̄i , p̄′i )− ξ, (5.4)

where C serves as a complexity–accuracy trade-off parameter as in the SVM algorithm (see
Cristianini and Shawe-Taylor (2000)) and ξ is a non-negative slack variable, which indicates
the loss of the ith example. Intuitively, we would like to minimize the loss of the current
example, i.e. the slack variable ξ , while keeping the weight vector w as close as possible to
our previous weight vector wi−1. The constraint makes the projection of the correct phoneme
sequence (p̄i, s̄i ) onto w higher than the projection of the predicted phoneme sequence
(p̄′i , s̄′i ) onto w by at least the Levenshtein distance between them. Using similar derivation as
in Keshet et al. (2007), it can be shown that the solution to the above optimization problem is

wi = wi−1 + αi�φi , (5.5)

where �φi = φ(x̄i, p̄i , s̄i)− φ(x̄i , p̄′i , s̄′i ). The value of the scalar αi is based on the
Levenshtein distance γ (p̄i, p̄′i ), the different scores that p̄i and p̄′i received according to
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Input: training set T = {(x̄i , p̄i , s̄i )}mi=1; validation set Tvalid = {(x̄i , p̄i , s̄i )}mvalid
i=1 ; parameter C

Initialize: w0 = 0

For i = 1, . . . , m

Predict: (p̄′i , s̄′i )= arg max
p̄,s̄

wi−1 · φ(x̄i , p̄, s̄)
Set: �φi = φ(x̄i , p̄i , s̄i )− φ(x̄i , p̄′i , s̄′i )
Set: �(wi−1; x̄i , p̄i , s̄i )=max{γ (p̄i, p̄′i )− wi−1 ·�φi , 0}
If �(wi−1; x̄i , p̄i , s̄i ) > 0

Set: αi =min

{
C,

�(wi−1; x̄i , p̄i , s̄i )

‖�φi‖2

}
Update: wi = wi−1 + αi ·�φi

Output: The weight vector w∗ which achieves best performance on a validation set Tvalid:

w∗ = arg min
w∈{w1,...,wm}

mvalid∑
j=1

γ
(
p̄j , f (x̄j )

)

Figure 5.1 An iterative algorithm for phoneme recognition.

wi−1 and a parameter C. Formally,

αi =min

{
C,

max{γ (p̄i, p̄′i )− wi−1 ·�φi , 0}
‖�φi‖2

}
. (5.6)

A pseudo-code of our algorithm is given in Figure 5.1.
Before analyzing the algorithm we define the following hinge loss function for phoneme

sequence recognition:

�(w; (x̄i , p̄i , s̄i ))=max
p̄′,s̄ ′

[γ (p̄i, p̄′)− w · (φ(x̄i , p̄i , s̄i )− φ(x̄i , p̄′, s̄′))]+, (5.7)

where [a]+ =max{0, a}. The phoneme sequence loss function differs from the alignment
loss function defined in Chapter 4 only by the cost function γ . Here, the cost is the
Levenshtein distance, while in the alignment case the cost is defined in Equation (4.1).

We now analyze our algorithm from Figure 5.1. Our first theorem shows that under some
mild technical conditions, the cumulative Levenshtein distance of the iterative procedure,∑m
i=1 γ (p̄i, p̄

′
i ), is likely to be small.

Theorem 5.4.1 Let T = {(x̄1, p̄1, s̄1), . . . , (x̄m, p̄m, s̄m)} be a set of training examples and
assume that for all i, p̄′ and s̄′ we have that ‖φ(x̄i , p̄′, s̄′)‖ ≤ 1/2. Assume there exists a
weight vector w� that satisfies

w · φ(x̄i , p̄i , s̄i )− w · φ(x̄i , p̄′, s̄′)≥ γ (p̄i , p̄′)
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for all 1≤ i ≤m and p̄′. Let w1, . . . , wm be the sequence of weight vectors obtained by the
algorithm in Figure 5.1 given the training set T . Then,

1

m

m∑
i=1

�(wi; (x̄i , p̄i , s̄i ))≤ 1

m

m∑
i=1

�(w�; (x̄i , p̄i , s̄i ))+ 1

Cm
‖w�‖2 + 1

2
C. (5.8)

In particular, if C = 1/
√
m then,

1

m

m∑
i=1

�(wi; (x̄i , p̄i , s̄i ))≤ 1

m

m∑
i=1

�(w�; (x̄i , p̄i , s̄i))+ 1√
m

(
‖w�‖2 + 1

2

)
. (5.9)

The proof of the theorem follows the line of reasoning of Theorem 4.5.1.
The loss bound of Theorem 5.4.1 can be translated into a bound on the Levenshtein

distance error as follows. Note that the hinge loss defined by Equation (5.7) is always greater
than γ (p̄i, p̄′i ):

γ (p̄i , p̄
′) ≤ �(wi; (x̄i , p̄i , s̄i )).

Therefore, we get the following corollary.

Corollary 5.4.2 Under the conditions of Theorem 5.4.1 the following bound on the cumula-
tive Levenshtein distance holds:

m∑
i=1

γ (p̄i , p̄
′
i ) ≤

1

m

m∑
i=1

�(w�; (x̄i , p̄i , s̄i ))+ 1√
m

(
‖w�‖2 + 1

2

)
. (5.10)

The next theorem tells us that if the cumulative Levenshtein distance of the iterative
procedure is small, there exists at least one weight vector among the vectors {w1, . . . , wm}
which attains small averaged Levenshtein distance on unseen examples as well. To find this
weight vector we simply calculate the averaged Levenshtein distance attained by each of the
weight vectors on a validation set. The average Levenshtein distance in defined as

E[γ (p̄, p̄′)] = E(x̄,p̄,s̄)∼D[γ (p̄, f (x̄))],
where p̄′ is the phoneme sequence predicted by the function f defined in Equation (5.2),
and the expectation is taken over a fixed and unknown distribution D over the domain of the
examples, X ∗ × P∗ × N

�.

Theorem 5.4.3 Under the same conditions of Theorem 5.4.1 assume that the training set T
and the validation set Tvalid are both sampled i.i.d. from a distribution D. Denote by mvalid
the size of the validation set. Assume in addition that γ (p̄, p̄′)≤ 1 for all p̄ and p̄′. Then,
with probability of at least 1− δ we have that

E[γ (p̄, p̄′)] ≤ 1

m

m∑
i=1

�(w�; (x̄i , p̄i , s̄i ))+ ‖w
�‖2 + 1

2 +
√

2 ln(2/δ)√
m

+
√

2 ln(2m/δ)√
mvalid

.

(5.11)

The proof of the theorem goes along the lines of the proof of Theorem 4.5.2. Note that the
Levenshtein distance is generally not upper bounded by 1. The theorem presented here is
only to show a qualitative result, and can be changed to the case where γ (p̄, p̄′)≤ γ0, for
γ0 ∈ R a constant.
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5.5 Nonlinear Feature Functions

Recall that the kernel based phoneme recognizer is not formulated with probabilities, but
rather as a dot product of the vector feature function φ and a weight vector w ∈H:

p̄′ = arg max
p̄

(
max
s̄

w · φ(x̄, p̄, s̄)).
In the spirit of a generative HMM-based speech recognizer, this function can be written as
a sum of the phoneme acoustic model, phoneme duration model and phoneme transition
model:

p̄′ = arg max
p̄

(
max
s̄

wacoustic · φacoustic(x̄, p̄, s̄)

+ wduration · φduration(p̄, s̄)+ wtransition · φtransition(p̄)
)
. (5.12)

where
w= (wacoustic, wduration, wtransition)

and
φ(x̄, p̄, s̄)= (

φacoustic(x̄, p̄, s̄), φduration(p̄, s̄), φtransition(p̄)
)
.

Let us now present each of the models in detail.

5.5.1 Acoustic Modeling

Assume that we would like to use the multiclass phoneme classifier described in Section 5.3
to classify a whole speech utterance. Let us also assume that we already have the set of proto-
types {w1, . . . , w|P |}, which defines the multiclass phoneme classifier as in Equation (5.1).
The predicted phoneme sequence given the input speech utterance x̄= (x1, . . . , xT ) using
the phoneme classifier is

(p1, . . . , pT )= arg max
(p1,...,pT )

T∑
t=1

wpt · xt . (5.13)

The advantage of a phoneme recognizer over a phoneme classifier is that it can incorporate
temporal relations into the recognition process. Such a temporal relation can be stated in
terms of minimum and maximum phoneme duration or in terms of the allowable transition
between phonemes. We base our phoneme recognition kernel on the sum of the scores:

f (x̄, p̄, s̄)=
T∑
t=1

wpt · xt (5.14)

=
|p̄|∑
l=1

sl+1−1∑
t=sl

wpl · xt (5.15)

=
∑
p∈P

wp ·
|p̄|∑
l=1

sl+1−1∑
t=sl

�{p=pl }xt . (5.16)



76 AUTOMATIC SPEECH AND SPEAKER RECOGNITION

In the transition from Equation (5.14) to Equation (5.15) we change the summation over
frames to summation over phonemes of a phoneme sequence. Note that the score f (x̄, p̄, s̄)
can be thought of as the non-probabilistic equivalent of the likelihood of the acoustic
sequence x̄ given the phoneme sequence p̄ and the timing sequence s̄.

Denote by wacoustic the weight vector composed of a concatenation of the prototypes wp,
1≤ p ≤ |P |, namely, wacoustic = (w1, . . . , w|P |). We can now define the acoustic feature
function of phoneme p as

φp(x̄, p̄, s̄)=
|p̄|∑
l=1

sl+1−1∑
t=sl

�{p=pl }xt . (5.17)

Hence we have

f (x̄, p̄, s̄)=
∑
p∈P

wpφp(x̄, p̄, s̄)= wacoustic · φacoustic(x̄, p̄, s̄), (5.18)

where φacoustic(x̄, p̄, s̄)= (
φ1(x̄, p̄, s̄), . . . , φ|P |(x̄, p̄, s̄)

)
.

So far we have described the acoustic feature function φacoustic(x̄, p̄, s̄) as a linear function
of the acoustic feature vectors {xt }. We now turn to describe the nonlinear version of the
same feature function, based on Mercer kernels. First, we show that the weight vector w can
always be written as a linear function of φ(x̄, p̄, s̄). Then we replace the linear dependency
of φacoustic in the acoustic vectors with a nonlinear dependency, and get a nonlinear phoneme
recognizer.

Note that in the kernel based algorithm presented in Section 5.4, the weight vector wi can
be written as (see Equation (5.5))

wi = wi−1 + αi�φi = wi−2 + αi−1�φi−1 + αi�φi = · · · =
i∑

j=1

αj�φj . (5.19)

This way of presenting w is common to all kernel based algorithms and it is supported by the
representer theorem (Kimeldorf and Wahba 1971). Focusing on the acoustic part of w and
expanding�φj we have

wacoustic =
i∑

j=1

αj
(
φacoustic(x̄j , p̄j , s̄j )− φacoustic(x̄j , p̄′j , s̄′j )

)
. (5.20)

Plugging Equation (5.17) into the last equation we have

wacoustic =
∑
p∈P

i∑
j=1

α
p
j (φ

p(x̄j , p̄j , s̄j )− φp(x̄j , p̄′j , s̄′j ))

=
∑
p∈P

i∑
j=1

α
p
j

( |p̄j |∑
l=1

sj l+1−1∑
t=sj l

�{p=pj l}xj t −
|p̄′j |∑
l=1

s ′j l+1
−1∑

t=s ′j l
�{p=p′j l } xj t

)

=
∑
p∈P

i∑
j=1

α
p
j

|x̄j |∑
t=1

(�{p=pj t∨ p �=p′j t } xj t − �{p �=pj t∨ p=p′j t } xj t ), (5.21)
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Table 5.1 Calculation of phoneme sequence support patterns: only the bold lettered
phonemes are added to the support set

Frame t 1 2 3 4 5 6 7 8 9 10

True phoneme seq. p̄ f f f aa aa aa aa r r r
Predicted phoneme seq. p̄′ f f f f ih ih ih r r r

where pj t is the phoneme uttered in the tth frame of the j th phoneme sequence. Plugging
the last equation and Equation (5.17) into Equation (5.18) we get

wacoustic · φacoustic =
∑
p∈P

i∑
j=1

α
p

j

|x̄j |∑
t=1

(
�{p=pj t∨ p �=p′j t }

|p̄|∑
l=1

sl+1−1∑
t=sl

�{p=pl}xj t · xt

− �{p �=pj t∨p=p′j t }
|p̄|∑
l=1

sl+1−1∑
t=sl

�{p=pl }xj t · xt
)
. (5.22)

We can now replace the acoustic features {xt } with a mapped version of it, ψ(xt ), where ψ :
X →H, X is the acoustic feature vector space and H is a Hilbert space. The mapping ψ can
be expressed implicitly using Mercer kernel which defines the inner product as k(xt1, xt2)=
ψ(xt1) · ψ(xt2).

Let us take a deeper look at Equation (5.22). The first sum is over all phonemes in the
phoneme set, and it can be thought of as the sum over feature functions for each phoneme.
The second sum is over the support set. The support vectors defining this set can be better
understood by looking at Equation (5.21). Usually the support set is composed of those
vectors which the iterative classifier predicted incorrectly during training, or which define the
boundaries of the decision hyperplane. In a sequence-based classification, as we have here,
the support is not composed of the whole sequence which the recognizer does not predict
correctly but only the misclassified frames in these sequences. Suppose the frame t was not
predicted correctly, then the corresponding acoustic feature xt becomes the j th support, with
positive constant αpj for the correct label pj t and negative constant−αpj for the mis-predicted
label p′j t . This is depicted in Table 5.1.

5.5.2 Duration Modeling

The duration modeling is oblivious of the speech signal itself and merely examines the
duration of each phoneme. Let D = (d1, . . . , dN) denote a set of N predefined possible
phoneme duration values. For each phoneme in our phoneme set ρ ∈ P and d ∈D let
φduration
ρ,d (p̄, s̄) denote the number of times the phoneme ρ appeared in p̄ while its duration

was at least d; that is,

φduration
ρ,d (p̄, s̄)= |{k : pl = ρ ∧ (sl+1 − sl)≥ d}|. (5.23)

The overall duration modeling is a vector which builds as a concatenation of the terms in
Equation (5.23), namely

φduration(p̄, s̄)= (
φduration
ρ1,d1

(p̄, s̄), φduration
ρ1,d2

(p̄, s̄), . . .
)
. (5.24)
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5.5.3 Transition Modeling

Finally, we present the phoneme transition modeling. Let A(p′, p) be an estimated transition
probability matrix from phoneme p′ to phoneme p. That is,

A(p′, p) = expected number of transitions from p′ to p

expected number of transitions from p′
.

Additionally, let�= (θ1, . . . , θM) be a set of threshold values. For each θi ∈� let φtransition
θ,pl−1,pl

be the number of times a switch from phoneme pl−1 to phoneme pl occurs in p̄ such that
A(pl−1, pl) is at least θ . That is,

φtransition
θ,pl−1,pl

(p̄)= |{k : A(pl−1, pl)≥ θ}|.
The overall transition modeling is a vector which builds as a concatenation of the terms.

5.6 Preliminary Experimental Results

To validate the effectiveness of the proposed approach we performed experiments with the
TIMIT corpus. All the experiments described here have followed the same methodology.
We divided the training portion of TIMIT (excluding the SA1 and SA2 utterances) into two
disjoint parts containing 3600 and 96 utterances. The first part is used as a training set and
the second part is used as a validation set. Mel-frequency cepstrum coefficients (MFCC)
along with their first and second derivatives were extracted from the speech waveform in
a standard way along with cepstral mean subtraction (CMS). The TIMIT original phoneme
set of 61 phonemes was mapped to a 39 phoneme set as proposed by Lee and Hon (1989).
Performance was evaluated over the TIMIT core test set by calculating the Levenshtein
distance between the predicted phoneme sequence and the correct one. This test set was
proposed in the TIMIT documentation and includes representative 192 utterances from all
TIMIT test utterances.

We applied our method as discussed in Section 5.4 and Section 5.5 where the hyper-
parameters were chosen on the validation set (σ 2 = 14, C = 1). We compared the results
of our method to the monophone HMM approach, where each phoneme was represented
by a simple left-to-right HMM of five emitting states with 40 diagonal Gaussians. These
models were enrolled as follows: first the HMMs were initialized using K-means, and then
enrolled independently using EM. The second step, often called embedded training, re-
enrolls all the models by relaxing the segmentation constraints using a forced alignment.
Minimum values of the variances for each Gaussian were set to 20% of the global variance
of the data. All HMM experiments were done using the Torch package (Collobert et al.
2002). All hyper-parameters including number of states, number of Gaussians per state,
variance flooring factor were tuned using the validation set. The overall results are given
in Table 5.2. We report the number of insertions, deletions and substitutions, as calculated
by the Levenshtein distance. The Levenshtein distance is defined as the sum of insertions,
deletions, and substitutions. ‘Accuracy’ stands for 100% minus the Levenshtein distance and
‘correct’ stands for accuracy plus insertions. As can be seen, the HMM method outperforms
our method in terms of accuracy, mainly due to the high level of insertions of our method,
suggesting that a better duration model should be explored. Nevertheless, we believe that the
potential of our method is larger than the results reported.
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Table 5.2 Phoneme recognition results on TIMIT core test set. The label ‘Kernel based’
refers to the discriminative algorithm using the kernel wrapper with Gaussian kernel, while
the label ‘HMM’ refers to a monophone (no context) Hidden Marko Model

Correct Accuracy Insertions Deletions Substitutions

Kernel based 64.6 54.6 9.9 9.2 26.3
HMM 62.7 59.1 3.6 10.5 26.8

5.7 Discussion: Can we Hope for Better Results?

In this chapter we showed a kernel wrapper for phoneme recognition. The kernel wrapper
was built so as to generalize the SVM frame based phoneme classifier and to improve
its performance. However, the performance of the kernel wrapper with the discriminative
iterative algorithm was found to be inferior to the performance of a monophone HMM. We
assume there are several reasons for that.

The Algorithm. While the kernel wrapper presented here is suitable for any structured
SVM optimizer for sequences, we experimented it with the iterative algorithm. The iterative
algorithm is shown theoretically to be competitive with the optimal classifier of the form
of Equation (5.2), which attains small Levenshtein distance error. Theorem 5.4.3 promises
that when the number of training utterances, m, goes to infinity, the iterative algorithm will
converge. It might be the case that the convergence rate of the algorithm is not fast enough
and the training set is too small. This assumption is indeed verified while looking at the
learning curve of the algorithm depicted in Figure 5.2. In the figure we see the cumulative
iterative accuracy (also called online error) as a function of the iteration number, that is,
the accuracy in predicting the next training utterance before receiving its phonetic labeling.
This graph suggests that there is room for improvements of accuracy if there were more
training examples drawn from the same distribution, since the graph does not reach pick
performance asymptote. A potential remedy to this problem might be to use a different
algorithm, such as a batch structured SVM algorithm with Hildreth optimization (Hildreth
1957). Such an algorithm visits each utterance many times, and converges to the SVM
solution. Unfortunately, this is also a problem. The number of support patterns in the iterative
algorithm is around half a million, which is more than half the size of the training set. This is
more or less the expected number of support patterns in the batch algorithm, which means a
very heavy computing load.

Incorrect Assumptions. In Section 5.3 we assumed that the joint training of the
multiclass problem is better than the one-versus-one training scheme. It may not be the
case for the task of phoneme recognition, although it was shown in Crammer and Singer
(2001) that joint training outperforms other multiclass methods for SVM. Another hidden
assumption is that the maximization over the sequence is better than the maximization over
the sum of each frame as given in Equation (5.14). Comparing with other domains, like vision
and text, we believe that these assumptions are reasonable and not the major source of the
accuracy problem.

Efficiency. One of the most acute problems of the algorithm is the training and test
computational load in terms of both time and space. The support set includes more than
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Figure 5.2 Cumulative accuracy during the iterative training of phoneme recognition.

half of the training set. The prediction itself depends linearly on the size of the support, and
inference of each frame involved in applying the kernel operation for every single support
pattern.

Future work will be focused on more accurate algorithms which converge faster to the
SVM solution and on algorithms with reduced support set such as the Forgetron (Dekel et al.
2008) and the Projectron (Orabona et al. 2008).
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6

Augmented Statistical Models:
Using Dynamic Kernels for
Acoustic Models

Mark J. F. Gales

There has been significant interest in developing alternatives to Hidden Markov Models
(HMMs) as the underlying acoustic model for speech recognition. In particular, statistical
models which improve the weak temporal dependency representations in HMMs have been
popular. A number of schemes have been proposed based on additional observation, or latent
variable, dependencies. These approaches will be briefly reviewed in this chapter followed
by a detailed look at an alternative approach related to dynamic, or sequence, kernels. The
feature-spaces associated with dynamic kernels are one scheme for extracting information
from data sequences such as speech. These features, and the resulting kernels, may be directly
used in a classifier such as a Support Vector Machine (SVM). However, they may also be
viewed as features for training statistical models. One appropriate form of dynamic kernel
for this problem is the generative kernel, a generalization of the Fisher kernel. This kernel
uses a ‘base’ generative model, here an HMM, to extract features from the data. These
features do not have the same conditional independence assumptions as the original base
generative model used to derive them. Thus, they yield a systematic approach to adding
temporal dependencies into statistical models. These models are referred to as Augmented
Statistical Models. Two forms of Augmented Statistical Model are discussed in this chapter.
The first is a generative form, for which a large margin approach to training the parameters
is described. The second form of model is a discriminative one. Here the model parameters
are trained using conditional maximum likelihood training. The performance of these two
models is evaluated on a TIMIT phone classification task.

Au tomatic Speech and Speaker R ecognition: Large Margin and Ker n el Methods Edited by Joseph Keshet 
and Samy Bengio © 2009 John Wiley & Sons, Ltd. ISBN: 978-0-470-69683-5



84 AUTOMATIC SPEECH AND SPEAKER RECOGNITION

6.1 Introduction

There has been a wide variety of acoustic models applied to the speech recognition task.
These range from the standard HMM, to segmental models (Ostendorf et al. 1996), switching
linear dynamical systems (LDSs) (Rosti and Gales 2003), Buried Markov Models (BMMs)
(Bilmes 2003a) and mixed memory models (Nock 2001). Many of these models can be
viewed as graphical models (Rosti and Gales 2003). The underlying aspect of all these
models is how to appropriately model the dependencies (and complexities) of the speech
signal. For example, observations may be assumed to be conditionally independent of all
other observations given the state that generated them, as in an HMM (Rabiner 1989). Though
HMMs have one of the simplest forms of temporal correlation modeling, they are currently
the dominant form of acoustic model for speech recognition. When considering alternatives,
the fundamental questions that must be answered are: what latent variables should be used?
what dependencies between observations should be modelled? and how are the distributions
of the observations altered by these dependencies?

In this chapter a structured approach to obtaining the statistics to model the dependencies
between observations is described. Dynamic kernels, sometimes called sequence kernels, are
used to specify the statistics. These kernels have been applied in a range of speech processing
tasks: speaker verification (Campbell et al. 2005; Wan and Renals 2004), speech recognition
(Smith and Gales 2001) and spoken language understanding (Cortes et al. 2003). The
interesting attribute of many of these dynamic kernels is that the feature-spaces associated
with them contain temporal information about the data sequences. One standard scheme is
to use these kernels directly in a classifier, such as a SVM (Vapnik 1998). An interesting
alternative is described in this chapter. Here the feature-spaces from these kernels are used
as features in a statistical model. This type of model will be referred to as an Augmented
Statistical Model (Layton 2006; Smith 2003), since the approach increases the modeling
ability of a standard initial statistical model. A particular form of dynamic kernel is examined
here for use in Augmented Statistical Models, the generative kernel (Layton and Gales 2004),
which is closely related to the Fisher kernel (Jaakkola and Haussler 1999). This class of
kernel has some nice attributes when used in this form. It may be viewed as a Taylor series
expansion of standard generative models (Smith 2003; Smith and Gales 2001), as well as
being related to constrained exponential models (Amari and Nagaoka 2000).

The next section briefly describes some of the standard approaches used in speech
recognition for temporal correlation modeling. This is followed by a discussion on kernels
and specifically dynamic kernels. Two forms of Augmented Statistical Model are then
described, one generative, the other discriminative. A description of some initial experiments
using both of these forms of augmented model is then given.

6.2 Temporal Correlation Modeling

One of the challenges, and interests, in speech processing applications is that the training
and test data comprises sequences of observations. For example in speech recognition it is
common to use a fixed frame-rate of about 10 ms to extract feature vectors from the digitized
waveform. With a fixed frame-rate the number of feature vectors for a series of utterances
of even the same word, for example the digit one, will vary. Any form of classifier for
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Figure 6.1 Two representations of Hidden Markov Models. (a) Typical phone topology.
(b) Dynamic Bayesian Network.

speech recognition must be able to handle this variability in the length of the data sequences.
Furthermore, the feature-vectors will be heavily correlated in time due to the nature of
speech production. It is also necessary to model this temporal correlation in some fashion.
Attempting to explicitly model whole sequences has proved to be impractical to date. Thus
current acoustic models make use of conditional independence assumptions to handle both
these problems.

The most common form of acoustic model for speech recognition, and also used in a
range of other sequence classification and labeling problems, is the HMM (Rabiner 1989). An
HMM consists of a set of discrete states, with probabilities of transitions between the states.
Associated with each state is an output distribution which may be discrete or continuous.
The observations generated by each state are seen (these are the extracted feature vectors),
whereas the state sequence that generates a particular observation sequence is hidden. A
typical topology used in speech recognition is shown in Figure 6.1(a). There are three
emitting states and two non-emitting states, the latter shown shaded. A strict left-to-right
topology, as shown, is often enforced on the state transitions.

The HMM can also be described in terms of conditional independence assumptions. This
form may be viewed as being complementary to the topological constraints described above.
A standard way to represent these assumptions is to use a Dynamic Bayesian Network (DBN)
(Bilmes 2003b). The DBN describes the conditional dependencies of the model. The DBN
for an HMM is also shown in Figure 6.1(b). In the DBN notation used here, squares denote
discrete variables; circles continuous variables; shading indicates an observed variable and
no shading an unobserved variable. The lack of an arc between variables shows conditional
independence. Thus Figure 6.1 indicates that the observations generated by an HMM are
conditionally independent given the unobserved, hidden, state that generated it. To reduce
the impact of this conditional independence assumption first and second derivatives (delta
and delta–delta) parameters (Furui 1986) are often used in speech recognition systems. The
likelihood of an observation sequence, x̄1:T = x1, . . . , xT , being generated by an HMM with
parameters λ can be expressed as

p(x̄1:T ; λ)=
∑
q̄∈QT

( T∏
t=1

P(qt |qt−1)p(xt |qt; λ)
)
, (6.1)

where QT is the set of all valid state sequences of length T and qt is the state at time t in
sequence q̄. Though the form of temporal modeling in HMMs is quite weak, it has proved to
be remarkably successful for speech recognition.
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Figure 6.2 Dynamic Bayesian Networks for Hidden Markov Model extensions. (a) Buried
Markov models. (b) Switching linear dynamical system.

One of the desirable attributes of the DBN representation is that it is simple to
show extensions to HMMs in terms of how they modify the conditional independence
assumptions of the model. There are two approaches, which may be combined, to extend
the HMM structure in Figure 6.1 to improve temporal modeling: adding unobserved, latent,
variables; and adding dependency arcs between variables. An example of adding arcs, in
this case between observations, is shown in Figure 6.2(a). Here the observation distribution
is dependent on the previous two observations in addition to the state that generated it.
This form describes various extensions to HMMs: explicit temporal correlation modeling
(Wellekens 1987); vector predictors (Woodland 1992); and BMM (Bilmes 2003a). Although
an interesting direction for refining an HMM, which yields large increases in log-likelihood
values, this approach has not shown significant performance gains. One of the fundamental
issues with this approach is to determine which dependencies should be added. Though
discriminative approaches can be used for this selection (Bilmes 2003a), the choice is made
from only a restricted subset of all possible dependencies, normally based on a few frames
either side of the current frame. Augmented statistical models offer a more systematic way
of adding longer-term dependencies to an existing statistical model.

Instead of adding arcs, more unobserved, latent or hidden, variables may be added. To
compute probabilities, these hidden variables must then be marginalized out in the same
fashion as the unobserved state sequence for HMMs. For continuous variables this requires
integration over all values of the hidden variable and for discrete variables a summation
over all values. In Figure 6.2(b), the DBN for a switching LDS (Digalakis 1992) is shown.
Here another continuous latent variable is added that is conditionally independent of all other
variables given the discrete state and previous continuous state value. The observations are
dependent on this continuous state variable in addition to the standard HMM dependencies.
Unfortunately to date performance with this form of model has been poor (Rosti and Gales
2003). An issue with adding latent variables is that it is not possible to precisely determine
what variables should be added, and how they should influence the state output distribution.
Augmented statistical models do not alter the form of latent variables in the acoustic models,
relying instead on standard forms of latent variable models, such as HMMs and Gaussian
Mixture Models (GMMs).

6.3 Dynamic Kernels
This section briefly summarizes some of the standard dynamic kernels that have been used
in the speech processing and related fields. The general area of kernels is briefly discussed,
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with an emphasis on forms of dynamic kernels. Then generative kernels are described in
detail including the nature of the feature-space. A simple example illustrating the advantages
of using these generative kernels, and associated feature-space, for sequence classification is
detailed.

6.3.1 Static and Dynamic Kernels

Kernel approaches are becoming increasingly popular in a wide range of machine learning
applications. The basic concept is that the input space, the observation, is mapped to some
higher dimensional feature-space via a nonlinear transformation φ(). The kernel is then the
inner product, with an appropriate metric, of two observations in this high-dimensional space.
When a fixed dimensional observation, x, is used this will be referred to as a static kernel.
The static feature-space mapping, φs(), and associated kernel may be expressed as

k(xi , xj )= 〈φs(xi ), φs(xj )〉, (6.2)

where 〈·, ·〉 indicates the inner-product. Standard static kernels are polynomial kernels and
Gaussian kernels (Cristianini and Shawe-Taylor 2000). For these standard, static, kernels it is
not necessary to explicitly map the input-space to the feature-space as the inner product can
be expressed in terms of the original input-space. For example an in-homogenous polynomial
kernel of order-2 can be expressed as

k(xi, xj )= (1+ 〈xi , xj 〉)2. (6.3)

The choice of feature-space and resulting kernel becomes more interesting when sequence
data is being used. Here the dynamic kernel operation is of the form

k(x̄(i), x̄(j))= 〈φ(x̄(i)), φ(x̄(j))〉, (6.4)

where x̄(i) is the ith sequence. The mapping from the input-space to the feature-space, φ(),
is additionally required to map from the variable length sequences to a fixed dimension
in which the inner product is calculated. A number of kernels have been proposed for
handling sequence data (see Chapter 5), including marginalized count kernels (Tsuda et al.
2002), Fisher kernels (Jaakkola and Haussler 1999), string kernels (Saunders et al. 2003)
and rational kernels (Cortes et al. 2003). Originally these kernels were examined for
discrete sequences. For speech data they need to be able to handle sequences of continuous
observations. One such kernel is the generative kernel (Layton and Gales 2004), which is
related to Fisher kernels and is discussed in detail in the next section.

It is possible to combine static and dynamic kernels in two distinct fashions. First the
input-space defined by the dynamic kernel can be kernelized (Layton 2006). This has the
general form

k(x̄(i), x̄(j))= 〈φs(φ(x̄(i))), φs(φ(x̄(j)))〉. (6.5)

An alternative is to kernelize the observation prior to the application of the dynamic kernel.
Here

φs(x̄1:T )= φs(x1), . . . , φ
s(xT ). (6.6)
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One of the problems with using this form of static and dynamic kernel combination is
that possible forms of dynamic kernel are limited unless the static input space is explicitly
produced. For this reason the sequence kernel (Campbell et al. 2005) and related kernels
(Mariéthoz and Bengio 2007) simply use an average, effectively a single component
generative model. Some approximations to allow this form of kernel with more complex
dynamic kernels are possible (Longworth and Gales 2008).

An interesting contrast to dynamic kernels for acoustic modeling, where additional
information about the temporal correlations may be useful, are the kernels used for
text-independent speaker verification (see Chapter 12). Here the emphasis is on mapping
the variable length sequences to a fixed dimensionality rather than temporal correlation
modeling, as in text independent verification there is little consistent temporal information
between frames. A range of dynamic kernels and feature-spaces have been examined, which
can be roughly partitioned into parametric and derivative kernels (Longworth and Gales
2007). Examples of parametric kernels are mean super-vector kernel (Campbell et al. 2006;
Stolcke et al. 2005) and derivative kernels (Longworth and Gales 2007; Wan and Renals
2004) based on GMMs. One form of derivative kernel is the generative kernel described in
the next section. In contrast to the GMMs used in speaker verification they will be based on
HMMs, thus allowing additional temporal information to be incorporated.

6.3.2 Generative Kernels

An interesting class of dynamic kernels are based on feature-spaces obtained from derivatives
with respect to the model parameters of the log-likelihood from a generative model. Both
Fisher kernels (Jaakkola and Haussler 1999) and generative kernels (Layton and Gales 2004)
fall in this category. Since the number of model parameters is fixed, the first, or higher, order
derivatives of the log-likelihood with respect to the model parameters is a fixed size. Thus the
feature-space associated with these kernels will be a fixed dimension. In generative kernels
the feature space used has the form

φ(x̄1:T ; λ)=



log(p(x̄1:T ; λ))
∂

∂λ
log(p(x̄1:T ; λ))

...
∂ρ

∂λρ
log(p(x̄1:T ; λ))

 , (6.7)

where ρ is the order of the kernel and λ is the parameters of the generative model. When
specifying a generative kernel the generative model and its parameters must be given along
with the order of the derivatives. The form in Equation (6.7) becomes the feature-space for a
Fisher kernel when ρ = 1 and the log-likelihood term is removed.

It is interesting to look at the general attributes of this form of feature-space. It will be
assumed that the observations are conditional independent given the latent variable sequence
q̄ and that the output distribution given the latent variable is a member of the exponential
family. For an HMM, q̄ specifies the state-sequence. An individual state (or state-component
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pair) will be specified by, for example, sj . The log-likelihood may be expressed as

log(p(x̄1:T ; λ))= log

( ∑
q̄∈QT

P (q̄)

( T∏
t=1

p(xt |qt ; λ)
))
, (6.8)

where p(xt |sj ; λ) is a member of the exponential family associated with latent variable sj
with natural parameters λj and QT is the set of latent variable sequences of length T . The
member of the exponential family will be written as1

p(xt |sj ; λj )= 1

Z(λj )
exp(λT

jT(xt )), (6.9)

where Z(λj ) is the normalization term required to ensure the distribution is a valid PDF and
T(xt ) are the sufficient statistics. The derivative with respect to the parameters of the latent
variable sj can be expressed as Layton (2006)

∂

∂λj
log(p(x̄1:T ; λ))=

T∑
t=1

γj (t)

(
T(xt )− ∂

∂λj
log(Z(λj ))

)
, (6.10)

where γj (t) is the posterior probability of the latent variable state, sj , generating the
observation at time t given the complete observation sequence

γj (t)= P(qt = sj |x̄1:T ; λ). (6.11)

The second term in Equation (6.10) is not a function of the observations, so depending on the
metric it can often be ignored. Thus the feature-space is a weighted version of the exponential
model sufficient statistics, where the weighting is determined by the posterior probability. For
the example of an HMM with Gaussian state output distributions, the derivative with respect
to the mean of state sj , µj , is

∂

∂µj
log(p(x̄1:T ; λ))=

T∑
t=1

γj (t)	
-1(xt − µj ). (6.12)

Depending on the metric used the offset from the mean and transformation of the inverse
covariance matrix may be ignored as this may be subsumed with the metric.

It is informative to contrast the nature of the temporal dependencies in the generative
kernel feature-space to those in the generative model used to derive this feature-space.
Independence assumptions in the initial, base, statistical model are maintained in the
augmented model. Thus for the case of using a GMM to model the sequence (the
latent variables now represent the component generating the observation) there is no
additional temporal information. However, this is not the case for systems with conditional
independence, such as HMMs. The posterior, γj (t), in Equation (6.11) will be a function
of all the observations, x̄1:T . Thus the statistics associated with the derivative feature-space
will contain temporal correlation information from many observations. For more information
about higher-order derivatives and relationships to other sequence kernels see Layton (2006).

1The reference distribution has been bundled into the score-space in the generative model. This will be the case
for all the versions considered here.
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One of the problems with using generative kernels, compared with using static kernels
such as a polynomial kernel, is that the kernel requires the feature-space to be explicitly
calculated. However, if a static kernel is to be applied afterwards, it may be efficiently
implemented in the standard fashion as a kernel on the dynamic feature-space. In practice this
is not a major issue as for most of the situations of interest the number of model parameters
is only up to a few thousand.

An important aspect of the kernel is the metric to be used with the inner-product. The
kernel between two sequences, x̄(i) and x̄(j), given the feature-space φ() is often expressed as

k(x̄(i), x̄(j); λ)= φ(x̄(i); λ)TG-1φ(x̄(j); λ), (6.13)

where G defines the metric and should be positive semi-definite. If only the first order
derivatives are used (as in the Fisher kernel), then an appropriate metric for calculating
distances (as used for example in an SVM) is the Fisher Information matrix defined as
(Jaakkola and Haussler 1999)

G= E

{(
∂

∂λ
log(p(x̄; λ))

)(
∂

∂λ
log(p(x̄; λ))

)T}
, (6.14)

where the expectation is over all sequences x̄. For most latent variable models there is no
closed-form solution, so the matrix may be approximated by the identity matrix (Jaakkola and
Haussler 1999), or by using an estimate based on the training sequences. In the experiments
described later the latter approach was used and also applied to all elements of the feature-
space.

6.3.3 Simple Example

The generative kernel differs from the Fisher kernel in a number of ways. One of the more
interesting differences is the possible use of higher-order derivatives in the feature-space.
To illustrate the advantage of using these higher order derivatives, as well as the usefulness
of derivative-based feature-spaces in general, consider the simple example of a two class
problem with two discrete output symbols {A, B}. The training examples (equally distributed)
are: Class ω1: AAAA, BBBB; Class ω2: AABB, BBAA. If a large amount of training data is
available, the discrete two-emitting state HMM shown in Figure 6.3 would be trained using
ML for both class ω1 and ω2. These HMMs are clearly unable to distinguish between the
sequences from class ω1 and ω2.

The generative score-space for this discrete case is similar to the component priors in a
continuous HMM system. Initially consider the differential with respect to bin m of state
sj (equivalent in the continuous case to the prior of component m in state sj ). The first
order-derivative is given by

∂

∂cjm
log(p(x̄1:T ; λ))=

T∑
t=1

(
γjm(t)/cjm −

M∑
m=1

γjm(t)

)
. (6.15)
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Figure 6.3 Example discrete Hidden Markov Model topology and state probabilities and
associated scores.

For the second-order derivative, considering two different bins m and n from states sj and sk
respectively:

∂2

∂ckn∂cjm
log(p(x̄1:T ; λ))= 1

cjmckn

T∑
t=1

T∑
τ=1

(D(q
(jm)
t , q(kn)

τ )− cjmD(q
(j)
t , q

(jm)
t )

− cknD(q
(jm)
t , q(k)τ )+ cjmcknD(q

(j)
t , q(k)τ )), (6.16)

where

D(q
(jm)
t , q(kn)

τ )= P(qt = sjm, qτ = skn|x̄1:T ; λ)− γjm(t)γkn(τ ).

As with the continuous HMM case, these derivative features are functions of the complete
observation sequence as they depend on the state/component posterior γjm(t), which is a
function of x̄1:T . Thus long-term dependencies may be represented by these forms of features.

Table 6.1 Feature vector values for a generative kernel

Class ω1 Class ω2

Feature AAAA BBBB AABB BBAA

log(p(x̄1:T ; λ)) −1.11 −1.11 −1.11 −1.11
∂

∂c2A
log(p(x̄1:T ; λ)) 0.50 −0.50 0.33 −0.33

∂2

∂c2
2A

log(p(x̄1:T ; λ)) −3.83 0.17 −3.28 −0.61

∂2

∂c2A∂c3A
log(p(x̄1:T ; λ)) −0.17 −0.17 −0.06 −0.06

Table 6.1 shows the values of some elements of the feature vector associated with a
generative kernel for each of the two classes. It is clear that using the first and higher order
derivatives of the log-likelihood allow the two classes to be separated, in some cases using a
simple linear classifier. From the last row, (∂2/(∂c2A∂c3A)) log(p(x̄1:T ; λ)), of the table the
feature captures the obvious difference between the two classes that the label changes part
way through.
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6.4 Augmented Statistical Models

One of the standard ways to use dynamic kernels, or their associated feature-spaces, is
directly as features in a classifier such as an SVM (Smith and Gales 2001). However, an
interesting alternative is to use the feature-space as statistics in, for example, a member of
the exponential family. As feature-spaces of these kernels incorporate additional temporal
information, with higher-order derivatives including more information, this yields a system-
atic approach to adding temporal dependencies. These new models will be referred to as
Augmented Statistical Models and may either be generative in nature, or discriminative. Both
these forms are discussed in this section.

6.4.1 Generative Augmented Models

The form of exponential model given in Equation (6.9) considers only features from an
individual observation. A more general case is to consider features from the complete
sequence x̄1:T . Here

p(x̄1:T ; α)= 1

Z(α)
exp(αTT(x̄1:T )), (6.17)

where α is now the natural parameters of the exponential model. As previously discussed,
the options for sufficient statistics to extract from the sequence x̄1:T are very broad and will
have an important influence on the nature of the acoustic model.

An interesting subset of the set of all possible members of the exponential family is
the constrained exponential family (Amari and Nagaoka 2000). Here, a local exponential
approximation to the reference distribution is used as the statistical model, where the local
approximation replicates some of the properties of the reference distribution. A slightly
more general form of statistical model than the constrained exponential family is possible.
In addition to the values of the local exponential model, the distribution parameters of the
model to derive the local exponential distribution may also be trained from the data. This is
the generative form of the Augmented Statistical Model (Smith 2003).

Generative Augmented Statistical Models (Aug) are an attractive approach to building
class-conditional probability density functions, since they yield a mathematically consistent
formulation to add dependencies into the model. First a base statistical model, p(x̄; λ), is
defined. A member of the exponential family that locally approximates this base distribution
for a particular set of parameters λ is then used as the final statistical model. The general
form of Augmented Statistical Model for a base statistical model can be expressed as2

p(x̄1:T ; λ, α)= 1

Z(λ, α)
exp(αTφ(x̄1:T ; λ)), (6.18)

where φ(x̄1:T ; λ) is the score-space shown in Equation (6.7) and Z(λ, α) is the appropriate
normalization term given by

Z(λ, α)=
∫

exp(αTφ(x̄; λ))d x̄. (6.19)

2For simplicity, in this work the natural basis and higher order derivatives are assumed to yield a set of orthogonal
bases. Given this assumption it is not necessary to distinguish between covariant and contravariant bases and
components (Amari and Nagaoka 2000).
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The integral is over all observation sequences. Unfortunately this normalization term can be
solved for only a small number of possible models. The base models of interest, such as
HMMs, cannot be simply solved.

The normalization issue can be dealt with for binary problems by directly considering
Bayes’ decision rule for generative models (Gales and Layton 2006). For the two classes ω1
and ω2, with parameters α(1), λ(1) and α(2), λ(2) respectively, the decision rule is

log

(
P(ω1)Z(λ

(2), α(2)) exp(α(1)Tφ(x̄1:T ; λ(1)))
P (ω2)Z(λ

(1), α(1)) exp(α(2)Tφ(x̄1:T ; λ(2)))
) ω1
>
<
ω2

0 (6.20)

where P(ω1) and P(ω2) are priors for the two classes. Note this form of discriminative
training of generative models is related to discriminative training of HMMs; see for example
Gales (2007). The decision rule can be re-expressed as

[
α(1)

α(2)

]T [
φ(x̄1:T ; λ(1))
−φ(x̄1:T ; λ(2))

]
+ log

(
P(ω1)Z(λ

(2), α(2))

P (ω2)Z(λ
(1), α(1))

) ω1
>
<
ω2

0. (6.21)

This is now in the form of a linear decision boundary, where the parameters of the decision
boundary, α(1) and α(2), can be estimated using any of the standard approaches. The
intractable normalization term is part of the bias term and does not need to be computed
explicitly. If for example an SVM is used, which is the scheme used in the results presented
later, this is the equivalent of using the following dynamic kernel:

k(x̄(i), x̄(j); λ)=
[
φ(x̄(i); λ(1))
−φ(x̄(i); λ(2))

]T

G-1
[
φ(x̄(j); λ(1))
−φ(x̄(j); λ(2))

]
. (6.22)

The natural parameters α(1) and α(2) found using this kernel and an SVM will be estimated
in a Maximum Margin (MM) fashion.

There are a number of constraints that must be satisfied for this scheme to yield a valid
generative model; in particular that Z(α, λ) is bounded. This restricts the possible values of
α when using a score-space that includes, for example, second-order statistics. For a general
discussion of restrictions see Gales and Layton (2006) and Layton (2006). An interesting
side-effect of this approach is that the decision boundary obtained from an SVM has a direct
probabilistic interpretation, purely as a result of the nature of the feature-space.

Though this form of training allows the natural parameters of a generative augmented
model to be trained it is only appropriate for binary classification tasks. The majority of
speech processing applications (with the exception of speaker verification) are not binary. To
address this problem the acoustic code-breaking framework (Venkataramani et al. 2003) may
be used (Gales and Layton 2006). In this work code-breaking based on confusion networks
(Mangu et al. 1999) is used. This process is illustrated in Figure 6.4. First word lattices are
generated and then converted into confusion networks. These are then pruned so that there is
a maximum of two arcs between any nodes. Since classification is based on these arcs, the
possibly large vocabulary speech recognition task has been converted into a series of binary
classification tasks.
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Figure 6.4 Multi-class to binary classification for large vocabulary continuous speech
recognition. (a) Word lattice. (b) Pruned confusion network.

6.4.2 Conditional Augmented Models

Instead of using generative models, discriminative models have become increasingly popular
for classifying speech data (Gales 2007), for example using Conditional Random Fields
(CRFs) (Lafferty et al. 2001) and Hidden CRFs (HCRFs) (Gunawardana et al. 2005).
Conditional Augmented (C-Aug) (Layton and Gales 2006) Models are a discriminative form
of augmented model. In a similar fashion to a number of other models they use a maximum
entropy style model. However, rather than restricting the statistics to be the same as those
of a standard HMM, which is the starting point for the HCRF implementation, and thus
yielding systems very similar to discriminatively trained HMMs (Heigold et al. 2007), the
feature-space used for the generative kernels is used. This gives an elegant way of combining
generative and discriminative models.3

The basic form for the C-Aug model is

P(w|x̄1:T ; α, λ)= 1

Z(λ, α, x̄1:T )
exp(α(w)Tφ(x̄1:T ; λ(w))), (6.23)

where the observation sequence dependent normalization term is given by

Z(λ, α, x̄1:T )=
∑

w̃

exp(α(w̃)Tφ(x̄1:T ; λ(w̃))). (6.24)

It is no longer necessary to compute the normalization over all possible sequences; the
normalization term is now based on the classes and the specific data sequence of interest.
This is tractable so allows standard optimization schemes to be used to train the model. The
criterion used in this work is the conditional maximum likelihood. For further details of how
these models may be trained see Layton (2006) and Layton and Gales (2006).

In theory these models can be directly used to model the complete word sequences,
or utterances, w. However, for some tasks, such as large vocabulary speech recognition,
this is impractical as the number of possible classes (and model parameters) is vast. The
standard approach to addressing this is to combine sub-utterance, either word or phone,
models together. It is possible to use sub-utterance C-Aug models (Gales 2007; Layton 2006).
For example if the temporal features are assumed to be conditionally independent given, for

3The dependence of the dynamic kernel on the word sequence, indicated using λ(w), is now explicitly marked.
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example, the word-level segmentation, then

P(w|x̄1:T ; α, λ, θ)=
L∏
i=1

1

Z(λ, α, x̄(i)θ )
exp(α(wi)Tφ(x̄(i)θ ; λ(wi ))), (6.25)

where x̄(i)θ is the observations associated with the ith word wi using the segmentation θ and
the word sequence w= {w1, . . . , wL}. Preliminary results and discussion for this form of
model are given in Layton (2006).

6.5 Experimental Results

This section describes initial experiments with Augmented Statistical Models. The first
experiments examine the performance of both generative and discriminative augmented
models on a TIMIT phone classification task. The second experiment examines the issue
with applying the Generative Augmented Statistical Model to a large vocabulary speech
recognition task. For further details of the experimental configuration see Layton (2006) and
Layton and Gales (2006).

TIMIT is a standard phone classification, or recognition, task. Here TIMIT was used in a
phone-classification mode. For these experiments all the training data was used to train the
HMM system for initial recognition. All the HMMs had the same topology three-states, strict
left-to-right topology, with ten Gaussian components per state. Monophone models were built
to allow simple phone classification to be performed. The first set of experiments examined
the performance of acoustic code-breaking with augmented models. As this is a classification
task, the selection of the two most confusable labels for each phone was simple, based on the
initial HMM. Training data for the most confusable pairs were then extracted and used to
train augmented models.

Table 6.2 shows a comparison of Maximum Likelihood (ML) and Maximum Mutual
Information (MMI) (Gopalakrishnan et al. 1991) trained HMMs with an Augmented Sta-
tistical Model for three phone pairs. The number of test phones in each of the classes was
balanced to remove any biases. Two clear trends can be observed. First, that MMI training,
a discriminative training criterion often used for generative models, outperforms ML trained
HMMs for all the phone pairings. The use of an Aug model outperformed both forms of
standard HMM. The score-space used was a first-order derivative with respect to all the model
parameters.

Table 6.2 Classification error using a 10-component Hidden Markov Model on the
confusable pairs from the TIMIT core test set

Training Phone pair

Classifier λ α s/z er/r m/n

HMM ML — 21.9 25.2 26.7
HMM MMI — 20.7 18.6 21.0
Aug ML MM 16.4 14.8 20.0
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Table 6.3 Classification error using a Maximum Likelihood and Maximum Mutual
Information trained Hidden Markov Models and Conditional Augmented models on the
TIMIT core test set and the number of components per state (# Comp.)

Training # Comp.

Classifier λ α 10 20

HMM ML — 29.4 27.3
C-Aug ML CML 24.0 —

HMM MMI — 25.3 24.8
C-Aug MMI CML 23.4 —

An interesting question is the number of binary classifier pairs that are required to achieve
significant reductions in the error rate of the complete core test set. Using ten phone-pair
classifiers, based on the most confusable phone pairs, about 21% of the TIMIT core test data
was rescored, with an absolute reduction of 5.2% in the error rate on those phones rescored.
This corresponds to an absolute reduction of 1.1% over the complete core test set.

One of the issues with using the generative form of the augmented model is that a large
number of classifiers are required to rescore all the data. This is not an issue with the C-Aug
models as it naturally handles multi-class classification. Table 6.3 shows the contrast of ML
and MMI trained HMMs along with C-Aug versions of the models trained using Conditional
Maximum Likelihood (CML) training. Ten Gaussian components per state were used for the
baseline HMM, as well as the augmented model. In addition, 20 Gaussian components per
state HMM were also built. The C-Aug model consistently outperforms the standard HMM
with both ML and MMI training. As the number of parameters in the C-Aug is approximately
double that of the standard model for the same number of components, first-order derivatives
of all the model parameters are being used, it is interesting that the 10-component C-Aug
model is better than the 20-component HMM. Though significant gains in performance
were obtained with the C-Aug model, they are not as good as the results for the HCRF in
Gunawardana et al. (2005). This is felt to be because the score-space is defined using the
standard HMM, the parameters of which are currently not refined (which they are in the
HCRF). Furthermore for these experiments no language model scores were used.

It is possible to apply the acoustic code-breaking framework to a large vocabulary con-
tinuous speech recognition (LVCSR). A conversational telephone speech task, SwitchBoard,
was used. These LVCSR experiments are based on an ML-trained HMM triphone system
built on 400 hours of acoustic training data (fsh2004sub). Six thousand distinct decision-tree
state-clustered states were used. A trigram language model was used for initial decoding.
For further details of the training and language models see Evermann et al. (2005). The
lattices generated in the initial decoding were converted into confusion networks. The most
confusable pairs were then found and data to train the SVM obtained by building confusion
networks on all the training.

Compared with the TIMIT phone classification task where there are relatively few phone
pairs, the number of possible word pairs for a 58 000 word decoding vocabulary, as used in
these experiments, is vast. Which introduces an additional problem. In a similar fashion to
the TIMIT task, only the ten most confusable pairs were used. This resulted in approximately
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Table 6.4 Recognition results using Maximum Likelihood-trained Hidden Markov Models
with confusion network and code-breaking using ten Support Vector Machines on the
eval03 Conversation Telephone Speech Task

Decoding WER (%)

Viterbi 30.8

Confusion network 30.1
+ code-breaking 30.0

1.6% of the words being rescored, compared with 21% for the TIMIT classification task.
This limits the possible gains on this task. Another issue is that for LVCSR systems language
models are essential to achieve good performance. Language models can be incorporated into
the acoustic code-breaking framework by adding, for example, the word-posteriors into the
score-space (Gales and Layton 2006) or by interpolating word-posteriors with the SVM score
(Venkataramani et al. 2003). The latter approach is adopted here. Of the words that were
rescored the absolute reduction in error rate was 4.0%, comparable to the gains observed on
the TIMIT classification task. However, as only 1.6% of the words were rescored the absolute
reduction in error rate was less than 0.1% – not statistically significant.

Table 6.4 summarizes these performance numbers. Confusion network decoding out-
performs standard Viterbi decoding as the decoding process is tuned to yielding the
minimum expected word error rate. The use of code-breaking only marginally improves the
performance of the confusion network decoding system.

6.6 Conclusions
One of the fundamental issues with using HMMs for speech recognition is that the temporal
correlation modeling is poor. Standard approaches to handling this problem are to introduce
explicit dependencies between observations, or additional latent variables. However, these
approaches have not yielded significant performance gains to date. This chapter has described
an alternative approach that uses dynamic kernels and the feature-spaces associated with
these kernels to construct acoustic models that have longer term dependencies than standard
HMMs. The feature-spaces from generative kernels, which are based on derivatives of the
log-likelihood of a generative model with respect to the model parameters, were discussed in
detail. Generative kernels are an interesting class to consider as they yield a feature-space
with, for example, different temporal dependencies than those of the original generative
model used to derive them. These features can then be used in a generative model based
on the exponential family and a maximum entropy style discriminative model. Evaluation of
these two forms of model on a TIMIT phone-classification task show that these Augmented
Statistical Models are useful for speech data classification.
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7

Large Margin Training of
Continuous Density Hidden
Markov Models

Fei Sha and Lawrence K. Saul

Continuous Density Hidden Markov Models (CD-HMMs) are an essential component of
modern systems for automatic speech recognition (ASR). These models assign probabilities
to the sequences of acoustic feature vectors extracted by signal processing of speech
waveforms. In this chapter, we investigate a new framework for parameter estimation in
CD-HMMs. Our framework is inspired by recent parallel trends in the fields of ASR and
machine learning. In ASR, significant improvements in performance have been obtained by
discriminative training of acoustic models. In machine learning, significant improvements
in performance have been obtained by discriminative training of large margin classifiers.
Building on both of these lines of work, we show how to train CD-HMMs by maximizing an
appropriately defined margin between correct and incorrect decodings of speech waveforms.
We start by defining an objective function over a transformed parameter space for CD-
HMMs, then describe how it can be optimized efficiently by simple gradient-based methods.
Within this framework, we obtain highly competitive results for phonetic recognition on the
TIMIT speech corpus. We also compare our framework for large margin training with other
popular frameworks for discriminative training of CD-HMMs.

7.1 Introduction

Most modern speech recognizers are built from CD-HMMs. The hidden states in these CD-
HMMs are used to model different phonemes or sub-phonetic elements, while the observed
outputs are used to model acoustic feature vectors. The accuracy of the speech recognition
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in CD-HMMs depends critically on the careful parameter estimation of their transition and
emission probabilities.

The simplest method for parameter estimation in CD-HMMs is the expectation-
maximization (EM) algorithm. The EM algorithm is based on maximizing the joint likelihood
of observed feature vectors and label sequences. It is widely used due to its simplicity
and scalability to large data sets, which are common in ASR. However, this approach has
the weakness that the model parameters of CD-HMMs are not optimized for sequential
classification: in general, maximizing the joint likelihood does not minimize the phoneme
or word error rates, which are more relevant metrics for ASR.

Noting this weakness, researchers in ASR have studied alternative frameworks for
parameter estimation based on conditional maximum likelihood (Nádas 1983), minimum
classification error (Juang and Katagiri 1992) and maximum mutual information (Bahl et al.
1986). The learning algorithms in these frameworks optimize discriminative criteria that
more closely track actual error rates. These algorithms do not enjoy the simple update rules
and relatively fast convergence of the EM algorithm, which maximizes the joint likelihood
of hidden state sequences and acoustic feature vectors. However, carefully and skillfully
implemented, they lead to lower error rates (McDermott et al. 2006; Roux and McDermott
2005; Woodland and Povey 2002).

Recently, in a new approach to discriminative acoustic modeling, we proposed a frame-
work for large margin training of CD-HMMs. Our framework explicitly penalizes incorrect
decodings by an amount proportional to the number of mislabeled hidden states. It also
gives rise to a convex optimization over the parameter space of CD-HMMs, thus avoiding
the problem of spurious local minima. Our framework builds on ideas from many previous
studies in machine learning and ASR. It has similar motivation as recent frameworks for
sequential classification in the machine learning community (Altun et al. 2003; Lafferty
et al. 2001; Taskar et al. 2004), but differs in its focus on the real-valued acoustic feature
representations used in ASR. It has similar motivation as other discriminative paradigms
in ASR (Bahl et al. 1986; Gopalakrishnan et al. 1991; Juang and Katagiri 1992; Kapadia
et al. 1993; Nádas 1983; Roux and McDermott 2005; Woodland and Povey 2002), but differs
in its goal of margin maximization and its formulation of the learning problem as a convex
optimization. The recent margin-based approaches of Jiang and Li (2007), Jiang et al. (2006),
Li et al. (2007, 2005) and Yu et al. (2006) are closest in terms of their goals, but entirely
different in their mechanics.

In this chapter, we describe our framework for large margin training and present a
systematic comparison with other leading frameworks for parameter estimation in CD-
HMMs. We compare large margin training not only with maximum likelihood (ML)
estimation, but also with popular discriminative methods based on conditional maximum
likelihood (CML) (Bahl et al. 1986; Nádas 1983) and minimum classification error (MCE)
(Juang and Katagiri 1992). We investigate salient differences between CML, MCE, and large
margin training through carefully designed experiments on the TIMIT speech corpus (Lamel
et al. 1986). In particular, we compare the results from multiple phonetic recognizers trained
with different parameterizations, initial conditions and learning algorithms. In all other
aspects, though, these systems were held fixed: they employed exactly the same acoustic
front end and model architectures (e.g. monophone CD-HMMs with full Gaussian covariance
matrices). Our experimental results illuminate the significant factors that differentiate
competing methods for discriminative training of CD-HMMs.
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The chapter is organized as follows. In Section 7.2, we review CD-HMMs and current
popular methods for parameter estimation. In Section 7.3, we describe our framework for
large margin training of CD-HMMs and give a brief survey of closely related work. In
Section 7.4, we compare the performance of phonetic recognizers trained in various different
ways. Finally, in Section 7.5, we review our main findings and conclude with a brief
discussion of future directions for research.

7.2 Background

CD-HMMs are used to specify a joint probability distribution over hidden state sequences
q̄ = {q1, q2, . . . , qT } and observed output sequences x̄= {x1, x2, . . . , xT }. The logarithm
of this joint distribution is given by:

log P(x̄, q̄)=
∑
t

[log P(qt |qt−1)+ log P(xt |qt)]. (7.1)

For ASR, the hidden states qt and observed outputs xt denote phonetic labels and acoustic
feature vectors, respectively, and the distributions P(xt |qt ) are typically modeled by multi-
variate Gaussian mixture models (GMMs):

P(xt |qt = j)=
M∑
m=1

ωjmN (xt ; µjm,	jm). (7.2)

In Equation (7.2), we have used N (x; µ, 	) to denote the Gaussian distribution with mean
vector µ and covariance matrix 	, while the constantM denotes the number of mixture
components per GMM. The mixture weights ωjm in Equation (7.2) are constrained to be
non-negative and normalized:

∑
m ωjm = 1 for all states j .

Let θ denote all the model parameters including transition probabilities, mixture weights,
mean vectors and covariance matrices. The goal of parameter estimation in CD-HMMs is to
compute the optimal θ∗ (with respect to a particular measure of optimality), given N pairs of
observation and target label sequences {x̄n, p̄n}Nn=1. In what follows, we review well-known
frameworks for parameter estimation based on ML, CML and MCE.

7.2.1 Maximum Likelihood Estimation

The simplest approach to parameter estimation in CD-HMMs maximizes the joint likelihood
of output and label sequences. The corresponding estimator is given by

θML = arg max
θ

∑
n

log P(x̄n, p̄n). (7.3)

For transition probabilities, ML estimates in this setting are obtained from simple counts
(assuming the training corpus provides phonetic label sequences). For GMM parameters, the
EM algorithm provides iterative update rules that converge monotonically to local stationary
points of the likelihood. The main attraction of the EM algorithm is that no free parameters
need to be tuned for its convergence.
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7.2.2 Conditional Maximum Likelihood

CD-HMMs provide transcriptions of unlabeled speech by inferring the hidden label sequence
with the highest posterior probability: p̄ = arg maxq̄P (q̄|x̄). The CML estimator in CD-
HMMs directly attempts to maximize the probability that this inference returns the correct
transcription. Thus, it optimizes the conditional likelihood:

θCML = arg max
θ

∑
n

log P(p̄n|x̄n). (7.4)

In CML training, the parameters are adjusted to increase the likelihood gap between correct
labelings p̄n and incorrect labelings q̄ �= p̄n. This can be seen more explicitly by rewriting
Equation (7.4) as

θCML = arg max
θ

[
log P(x̄n, p̄n)− log

∑
q̄

P (x̄n, q̄)
]
. (7.5)

The CML estimator in Equation (7.4) is closely related to the maximum mutual information
(MMI) estimator (Valtchev et al. 1997; Woodland and Povey 2002), given by

θMMI = arg max
θ

∑
n

log
P(x̄n, p̄n)
P (x̄n)P (p̄n)

. (7.6)

Note that Equations (7.4) and (7.6) yield identical estimators in the setting where the
(language model) probabilities P(p̄n) are held fixed.

7.2.3 Minimum Classification Error

MCE training is based on minimizing the number of sequence misclassifications. The number
of such misclassifications is given by

Nerr =
∑
n

sign
[
−log P(x̄n, p̄n)+ max

q̄ �=p̄n
log P(x̄n, q̄)

]
, (7.7)

where sign[z] = 1 for z > 0 and sign[z] = 0 for z ≤ 0. To minimize Equation (7.7), the
parameters must be adjusted to maintain a likelihood gap between the correct labeling and
all competing labelings. Unlike CML training, however, the size of the gap in Equation (7.7)
does not matter, as long as it is finite.

The non-differentiability of the sign and max functions in Equation (7.7) makes it difficult
to minimize the misclassification error directly. Thus, MCE training (McDermott et al. 2006)
adopts the surrogate cost function:

Nerr ≈
∑
n

σ

(
−log P(x̄n, p̄n)+ log

[
1

C

∑
q̄ �=p̄n

eη log P(x̄n,q̄)
]1/η)

, (7.8)

where the sigmoid function σ(z)= (1+ e−αz)−1 replaces the sign function sign[z], and a
softmax function (parameterized by η) replaces the original max. The parameters α and η in
this approximation must be set by heuristics. The sum in the second term is taken over the
top C competing label sequences.
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7.3 Large Margin Training

Recently, we proposed a new framework for discriminative training of CD-HMMS based
on the idea of margin maximization (Sha and Saul 2007b). Our framework has two salient
features: (1) it attempts to separate the accumulated scores of correct versus incorrect label
sequences by margins proportional to the number of mislabeled states (Taskar et al. 2004);
(2) the required optimization is convex, thus avoiding the pitfall of spurious local minima.

7.3.1 Discriminant Function

We start by reviewing the discriminant functions in large margin CD-HMMs. These
parameterized functions of observations x̄ and states q̄ take a form analogous to the log-
probability in Equation (7.1). In particular, we define

D(x̄, q̄)=
∑
t

[λ(qt−1, qt )+ ρ(xt , qt )] (7.9)

in terms of state–state transition scores λ(qt−1, qt ) and state–output emission scores
ρ(xt , qt ). Unlike Equation (7.1), however, Equation (7.9) does not assume that the transition
scores λ(qt−1, qt ) are derived from the logarithm of normalized probabilities. Likewise,
the emission scores ρ(xt , qt ) in Equation (7.9) are parameterized by sums of unnormalized
Gaussian distributions:

ρ(xt , qt = j)= log
∑
m

e
−(xt−µjm)

T	−1
jm (xt−µjm)−θjm, (7.10)

where the non-negative scalar parameter θjm ≥ 0 is entirely independent of 	jm (as opposed
to being related to its log-determinant).

To obtain a convex optimization for large margin training, we further reparameterize
the emission score in Equation (7.10). In particular, we express each mixture component’s
parameters {µjm, 	jm, θjm} as elements of the following matrix:

�jm =
[

	−1
jm −	−1

jm µjm

−µT
jm	

−1
jm µT

jm	
−1
jm µjm + θjm

]
. (7.11)

Our framework for large margin training optimizes the matrices �jm, as opposed to the
conventional GMM parameters {µjm, 	jm, θjm}. Since the matrix 	jm is positive definite and
the scalar θjm is non-negative, we also require the matrix �jm to be positive semidefinite
(as denoted by the constraint �jm � 0). With this reparameterization, the emission score in
Equation (7.10) can be written as

ρ(xt , qt = j)= log
∑
m

e−zT
t �jmzt where zt =

[
xt
1

]
. (7.12)

Note that this score is convex in the elements of the matrices�jm.
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7.3.2 Margin Constraints and Hamming Distances

For large margin training of CD-HMMs, we seek parameters that separate the discriminant
functions for correct and incorrect label sequences. Specifically, for each joint observation-
label sequence (x̄n, p̄n) in the training set, we seek parameters such that

D(x̄n, p̄n)− D(x̄n, q̄) ≥H(p̄n, q̄), ∀q̄ �= p̄n, (7.13)

where H(p̄n, q̄) denotes the Hamming distance between the two label sequences (Taskar
et al. 2004). Note how this constraint requires the log-likelihood gap between the target
sequence p̄n and each incorrect decoding q̄ to scale in proportion to the number of mislabeled
states.

Equation (7.13) actually specifies an exponentially large number of constraints, one for
each alternative label sequence q̄ . We can fold all these constraints into a single constraint by
writing

−D(x̄n, p̄n)+ max
q̄ �=p̄n

{H(p̄n, q̄)+D(x̄n, q̄)} ≤ 0. (7.14)

In the same spirit as the MCE derivation for Equation (7.8), we obtain a more tractable (i.e.
differentiable) expression by replacing the max function in Equation (7.14) with a ‘softmax’
upper bound:

−D(x̄n, p̄n)+ log
∑
q̄ �=p̄n

eH(p̄n,q̄)+D(x̄n,q̄) ≤ 0. (7.15)

Note that the constraint in Equation (7.15) is stricter than the one in Equation (7.14); in
particular, Equation (7.15) implies Equation (7.14). The exponential terms in Equation (7.15)
can be summed efficiently using a modification of the standard forward–backward procedure.

7.3.3 Optimization

In general, it is not possible to find parameters that satisfy the large margin constraint in
Equation (7.15) for all training sequences {x̄n, p̄n}Nn=1. For such ‘infeasible’ scenarios, we
aim instead to minimize the total amount by which these constraints are violated. However,
as a form of regularization, we also balance the total amount of violation (on the training
sequences) against the scale of the GMM parameters. With this regularization, the overall
cost function for large margin training takes the form

L= γ
∑
cm

trace(�cm)+
∑
n

[
−D(x̄n, p̄n)+ log

∑
q̄ �=p̄n

eH(p̄n,q̄)+D(x̄n,q̄)
]
+
. (7.16)

The first term in the cost function regularizes the scale of the GMM parameters; the scalar γ
determines the amount of regularization, relative to the second term in the cost function. In
the second term, the ‘+’ subscript in Equation (7.16) denotes the hinge function: [z]+ = z
if z > 0 and [z]+ = 0 if z ≤ 0. The minimization of Equation (7.16) is performed subject
to the positive semidefinite constraints �jm � 0. We can further simplify the minimization
by assuming that each emission score ρ(xt , qt ) in the first term is dominated by the
contribution from a single (pre-specified) Gaussian mixture component. In this case, the
overall optimization is convex (see Sha (2007); Sha and Saul (2007b) for further details).
The gradients of this cost function with respect to the GMM parameters �cm and transition
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parameters λ(q, q ′) can be computed efficiently using dynamic programming, by a variant
of the standard forward–backward procedure in HMMs (Sha 2007).

It is worth emphasizing two crucial differences between this optimization and previous
ones (Juang and Katagiri 1992; Nádas 1983; Woodland and Povey 2002) for discriminative
training of CD-HMMs for ASR. First, due to the reparameterization in Equation (7.11), the
discriminant function D(x̄n, q̄n) and the softmax function are convex in the model para-
meters. Therefore, the optimization in Equation (7.15) can be cast as a convex optimization,
avoiding spurious local minima (Sha 2007). Second, the optimization not only increases the
log-likelihood gap between correct and incorrect state sequences, but also drives the gap to
grow in proportion to the number of individually incorrect labels (which we believe leads to
more robust generalization).

7.3.4 Related Work

There have been several related efforts in ASR to incorporate ideas from large margin
classification. Many studies have defined margins in terms of log-likelihood gaps between
correct and incorrect decodings of speech. Previous approaches have also focused on
balancing error rates versus model complexity. However, these approaches have differed
from ours in important details. The approach in Jiang et al. (2006) and Li et al. (2005) was
based on maximizing the margin with respect to a preselected subset of training examples
correctly classified by initial models. The parameters in this approach were re-estimated
under constraints that they did not change too much from their initial settings. Later this
approach was extended to include all training examples (Jiang and Li 2007), but with the
parameter estimation limited only to the mean vectors of GMMs. In Li et al. (2007), a
large margin training criterion was defined in terms of averaged log-likelihood ratios over
mismatched frames. This approach was motivated by earlier training criteria for minimum
phone error training (Povey and Woodland 2002). Finally, in other work inspired by large
margin classification, Yu et al. (2006) extended MCE training by introducing and adapting
non-zero offsets in the sigmoid approximation for the zero-one loss. By mimicking the effects
of margin penalties, these offsets led to improved performance on a large vocabulary task
in ASR.

Note that our work differs from all the above approaches by penalizing incorrect decodings
in proportion to their Hamming distance from correct ones. In fact, as we discuss in
Section 7.4.2, it is possible to incorporate such penalties into more traditional frameworks
for CML and MCE training. In very recent work, such an approach has been shown to reduce
error rates on several tasks in large vocabulary ASR (Povey et al. 2008). It is also possible to
formulate margins in terms of string edit distances, as opposed to Hamming distances. Keshet
et al. (2006) experimented with this approach in the setting of online parameter estimation.

7.4 Experimental Results

We used the TIMIT speech corpus (Lamel et al. 1986; Lee and Hon 1988; Robinson 1994) to
perform experiments in phonetic recognition. We followed standard practices in preparing
the training, development and test data. Our signal processing front-end computed 39-
dimensional acoustic feature vectors from 13 mel-frequency cepstral coefficients and their
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first and second temporal derivatives. In total, the training utterances gave rise to roughly 1.2
million frames, all of which were used in training.

We trained CD-HMMs for phonetic recognition in all of the previously described
frameworks, including ML, CML, MCE and margin maximization. We also experimented
with several variants of these frameworks to explore the effects of different parameterizations,
initializations and cost functions.

In all the recognizers, the acoustic feature vectors were labeled by 48 phonetic classes,
each represented by one state in a first-order CD-HMM. For each recognizer, we compared
the phonetic state sequences obtained by Viterbi decoding with the ‘ground-truth’ phonetic
transcriptions provided by the TIMIT corpus. For the purpose of computing error rates, we
followed standard conventions in mapping the 48 phonetic state labels down to 39 broader
phone categories.

We computed two different types of phone error rates, one based on Hamming distance,
the other based on edit distance. The former was computed simply from the percentage
of mismatches at the level of individual frames. The latter was computed by aligning the
Viterbi and ground truth transcriptions using dynamic programming (Lee and Hon 1988),
then summing the substitution, deletion and insertion error rates from the alignment process.
The ‘frame based’ phone error rate (based on Hamming distances) is more closely tracked
by our objective function for large margin training, while the ‘string based’ phone error rate
(based on edit distances) provides a more relevant metric for ASR. We mainly report the
latter except in experiments where the frame based error rate provides additional revealing
context.

7.4.1 Large Margin Training

We trained two different types of large margin recognizers. The large margin recognizers in
the first group were ‘low-cost’ discriminative CD-HMMs whose GMMs were merely trained
for frame based classification. In particular, the parameters of these GMMs were estimated
by treating different frames of speech as i.i.d. training examples. Because such GMMs can be
viewed as a special case of CD-HMMs for ‘sequences’ containing exactly one observation,
large margin training reduces to a much simpler optimization (Sha and Saul 2006) that
does not involve Viterbi decoding or dynamic programming. These GMMs were then
substituted into first-order CD-HMMs for sequence decoding. The large margin recognizers
in the second group were fully trained for sequential classification. In particular, their
CD-HMMs were estimated by solving the optimization in Equation (7.15) using multiple
mixture components per state and adaptive transition parameters (Sha 2007; Sha and Saul
2007a,b).

Tables 7.1 and 7.2 show the results of these experiments for CD-HMMs with different
numbers of Gaussian mixture components per hidden state. For comparison, we also show
the performance of baseline recognizers trained by ML estimation using the EM algorithm.
For both types of phone error rates (frame based and string based), and across all model
sizes, the best performance was consistently obtained by large margin CD-HMMs trained
for sequential classification. Moreover, among the two different types of large margin
recognizers, utterance-based training generally yielded significant improvement over frame
based training.
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Table 7.1 Frame-based phone error rates, computed from Hamming distance, of
phonetic recognizers from differently trained Continuous Density Hidden Markov Models.
Reproduced by permission of c© 2007 MIT Press

Mixture components Baseline ML Large margin Large margin
(per hidden state) (EM algorithm) (frame based) (utterance-based)

1 45.2% 37.1% 29.5%
2 44.7% 36.0% 29.0%
4 42.2% 34.6% 28.4%
8 40.6% 33.8% 27.2%

ML, Maximum Likelihood; EM, Expectation Maximization.

Table 7.2 String-based phone error rates, computed from edit distance, of phonetic
recognizers from differently trained Continuous Density Hidden Markov Models.
Reproduced by permission of c© 2007 MIT Press

Mixture components Baseline ML Large margin Large margin
(per hidden state) (EM algorithm) (frame based) (utterance-based)

1 40.1% 36.3% 31.2%
2 36.5% 33.5% 30.8%
4 34.7% 32.6% 29.8%
8 32.7% 31.0% 28.2%

ML, Maximum Likelihood; EM, Expectation Maximization.

7.4.2 Comparison with CML and MCE

Next we compared large margin training with other popular frameworks for discriminative
training. Table 7.3 shows the string based phone error rates of different CD-HMMs trained by
ML, CML, MCE and margin maximization. As expected, all the discriminatively trained CD-
HMMs yield significant improvements over the baseline CD-HMMs trained by ML. On this
particular task, the results show that MCE does slightly better than CML, while the largest
relative improvements are obtained by large margin training (by a factor of two or more).
Using MMI on this task, Kapadia et al. (1993) reported larger relative reductions in error
rates than we have observed for CML (though not better performance in absolute terms). It
is difficult to compare our findings directly with theirs, however, since their ML and MMI
recognizers used different front ends and numerical optimizations than those in our work.

7.4.3 Other Variants

What factors explain the better performance of CD-HMMs trained by margin maximization?
Possible factors include: (1) the relaxation of Gaussian normalization constraints by the
parameterization in Equation (7.11), yielding more flexible models, (2) the convexity of the
margin-based cost function in Equation (7.16), which ensures that its optimization (unlike
those for CML and MCE) does not suffer from spurious local minima, and (3) the closer
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Table 7.3 String-based phone error rates, computed from edit distance, of phonetic
recognizers from differently trained Continuous Density Hidden Markov Models.
Reproduced by permission of c© 2007 IEEE

Mixture components Baseline ML Discriminative Discriminative Discriminative
(per hidden state) (EM algo.) (CML) (MCE) (large margin)

1 40.1% 36.4% 35.6% 31.2%
2 36.5% 34.6% 34.5% 30.8%
4 34.7% 32.8% 32.4% 29.8%
8 32.7% 31.5% 30.9% 28.2%

EM, Expectation Maximization; CML, Conditional Maximum Likelihood; MCE, Minimum Classification
Error.

Table 7.4 String-based phone error rates from discriminatively trained Continuous Density
Hidden Markov Models with normalized versus unnormalized Gaussian Mixture Models.
Reproduced by permission of c© 2007 IEEE

Mixture components Normalized Unnormalized Normalized Unnormalized
(per hidden state) (CML) (CML) (MCE) (MCE)

1 36.4% 36.0% 35.6% 36.4%
2 34.6% 36.3% 34.5% 35.6%
4 32.8% 33.6% 32.4% 32.7%
8 31.5% 31.6% 30.9% 32.1%

CML, Conditional Maximum Likelihood; MCE, Minimum Classification Error.

tracking of phonetic error rates by the margin-based cost function, which penalizes incorrect
decodings in direct proportion to their Hamming distance from the target label sequence.
To determine which (if any) of these factors played a significant role, we conducted several
experiments on the TIMIT corpus with variants of CML and MCE training.

First, we experimented with CML and MCE training procedures that did not enforce
GMM normalization constraints. In these experiments, we optimized the usual objective
functions for CML and MCE training, but parameterized the CD-HMMs in terms of the
discriminant functions for large margin training in Equation (7.9). Table 7.4 compares phone
error rates for CML and MCE training with normalized versus unnormalized GMMs. The
table shows that lifting the normalization constraints generally leads to slightly worse
performance, possibly due to overfitting. It seems that the extra degrees of freedom in
unnormalized GMMs help to optimize the objective functions for CML and MCE training in
ways that do not correlate with the actual phone error rate.

Next we experimented with different initial conditions for CML and MCE training.
Because the optimizations in these frameworks involve highly nonlinear, non-convex objec-
tive functions, the results are susceptible to spurious local optima. To examine the severity
of this problem, we experimented by re-initializing the CML and MCE training procedures
with GMMs that had been discriminatively trained for segment-based phonetic classification
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Table 7.5 String-based phone error rates from discriminatively trained Continuous Density
Hidden Markov Models with differently initialized Gaussian Mixture Models (GMMs).
The baseline GMMs were initialized by Maximum Likelihood estimation. The improved
GMMs were initialized by large margin training for segment-based phonetic classification.
Reproduced by permission of c© 2007 IEEE

Mixture components Baseline Improved Baseline Improved
(per hidden state) (CML) (CML) (MCE) (MCE)

1 36.4% 32.6% 35.6% 32.9%
2 34.6% 31.7% 34.5% 31.3%
4 32.8% 31.2% 32.4% 31.1%
8 31.5% 28.9% 30.9% 29.0%

CML, Conditional Maximum Likelihood; MCE, Minimum Classification Error.

(Sha and Saul 2006). These discriminatively trained GMMs provide a much better initial-
ization than those trained by ML estimation. Table 7.5 compares the results from different
initializations. For both CML and MCE training, the differences in performance are quite
significant: indeed, the improved results approach the performance of CD-HMMs trained
by margin maximization. These results highlight a significant drawback of the non-convex
optimizations in CML and MCE training – namely that the final results can be quite sensitive
to initial conditions.

Finally, we experimented with variants of CML and MCE training that penalize incorrect
decodings in proportion to their Hamming distances from the target label sequence. The
Hamming distance penalties in large margin training put more emphasis on correcting
egregiously mislabeled sequences. Our final experiments were designed to test whether
similarly proportional penalties in CML and MCE training would lead to better performance.
For CML training in these experiments, we maximized a reweighted version of the
conditional likelihood:

θCML
H = arg max

θ

∑
n

log
P(x̄n, p̄n)∑

q̄ e
H(p̄n,q̄)P (x̄n, q̄)

. (7.17)

The reweighting in Equation (7.17) penalizes incorrect decodings in proportion to their
Hamming distance from the target label sequence, analogous to the cost function of
Equation (7.16) for large margin training. For MCE training in these experiments, we applied
the same intuition by incorporating the Hamming distance penalty into the surrogate cost
function of Equation (7.8):

NH
err ≈

∑
n

σ

(
−log P(x̄n, p̄n)+ log

[
1

C

∑
q̄ �=p̄n

eη[H(p̄n,q̄)+log P(x̄n,q̄)]
]1/η)

. (7.18)

Note that this approach differs from merely incorporating an adaptive scalar offset into
the sigmoid transfer function. Such an offset has been shown to improve performance in
large vocabulary ASR (Yu et al. 2006). Though a positive scalar offset plays a similar
role as a ‘margin’, it does not explicitly penalize incorrect decodings in proportion to the
number of mislabeled states. Table 7.6 shows the results from CML and MCE training with
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Table 7.6 String-based phone error rates from discriminatively trained Continuous Density
Hidden Markov Models (CD-HMMs) with different cost functions. The CD-HMMs in the
third and fifth columns were trained by reweighting the penalties on incorrect decodings to
grow in proportion to their Hamming distance from the target label sequence. Reproduced
by permission of c© 2007 IEEE

Mixture components Baseline Reweighted Baseline Reweighted
(per hidden state) (CML) (CML) (MCE) (MCE)

1 36.4% 33.6% 35.6% 33.3%
2 34.6% 32.8% 34.5% 32.3%
4 32.8% 32.8% 32.4% 31.5%
8 31.5% 31.0% 30.9% 30.8%

CML, Conditional Maximum Likelihood; MCE, Minimum Classification Error.

normal versus reweighted objective functions. Interestingly, the reweighting led to generally
improved performance, but this positive effect diminished for larger models.

The experiments in this section were designed to examine the effects of relaxed nor-
malization constraints, local versus global optima and Hamming distance penalties in CML
and MCE training. Overall, though better initializations and reweighted objective functions
improved the results from CML and MCE training, none of the variants in this section
ultimately matched the performance from large margin training. It is difficult to assess which
factors contributed most strongly to this better performance. We suspect that all of them,
working together, play an important role in the overall performance of large margin training.

7.5 Conclusion

Discriminative learning of sequential models is an active area of research in both ASR (Li
et al. 2005; Roux and McDermott 2005; Woodland and Povey 2002) and machine learning
(Altun et al. 2003; Lafferty et al. 2001; Taskar et al. 2004). In this chapter, we have described
a particular framework for large margin training of CD-HMMs which makes contributions to
lines of work in both communities. In distinction to previous work in ASR, we have proposed
a convex, margin-based cost function that penalizes incorrect decodings in proportion to their
Hamming distance from the desired transcription. The use of the Hamming distance in this
context is a crucial insight from earlier work (Taskar et al. 2004) in the machine learning
community, and it differs profoundly from merely penalizing the log-likelihood gap between
incorrect and correct transcriptions, as commonly done in ASR. In distinction to previous
work in machine learning, we have proposed a framework for sequential classification
that naturally integrates with the infrastructure of modern speech recognizers. For real-
valued observation sequences, we have shown how to train large margin HMMs via convex
optimizations over their parameter space of positive semidefinite matrices. Using the softmax
function, we have also proposed a novel way to monitor the exponentially many margin
constraints that arise in sequential classification.

On the task of phonetic recognition, we compared our framework for large margin
training with two other leading frameworks for discriminative training of CD-HMMs.
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In our experiments, CD-HMMs trained by margin maximization achieved significantly better
performance than those trained by CML or MCE. Follow-up experiments suggested two
possible reasons for this better performance: (1) the convexity of the optimization for
large margin training and (2) the penalizing of incorrect decodings in direct proportion
to the number of mislabeled states. In future research, we are interested in applying large
margin training to large vocabulary ASR, where both CML and MCE training have already
demonstrated significant reductions in word error rates (McDermott et al. 2006; Valtchev
et al. 1997; Woodland and Povey 2002).
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A Survey of Discriminative
Language Modeling Approaches
for Large Vocabulary Continuous
Speech Recognition

Brian Roark

Discriminative training of language models has been the focus of renewed research interest
recently, and significant improvements to high accuracy large vocabulary continuous speech
recognition have been demonstrated through the use of such models. In this chapter, we
review past and present work on this topic, and focus in particular on three key issues:
training data, learning algorithms and features. We will show how simple models trained
under standard approaches can provide significant accuracy gains with negligible impact on
decoding time, and how richer models can provide further accuracy gains. We will argue that
while the published results are promising, many practical issues remain under-explored, so
that further improvements might be expected as the best practices become more developed.

8.1 Introduction

It has long been the case that system improvements in statistical speech recognition have
come far more from acoustic modeling innovations than from language modeling innovations
– to the extent that some top-notch researchers have quit working on language modeling
for speech recognition, sometimes with a parting message of warning to future researchers
against expecting system improvements. (See the extended version of Goodman (2001),
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and Samy Bengio © 2009 John Wiley & Sons, Ltd. ISBN: 978-0-470-69683-5
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which can be found with the search engine query: ‘language modeling’ ‘all hope abandon.’)
There are a number of reasons why little progress was observed due to language modeling,
including (though certainly not confined to): extreme sparse data; optimization of objectives
only very loosely corresponding to the true system objective; and difficulty integrating
disparate potential features into a single model. Sparse data is a problem that can be alleviated
with increased training data, which some may not consider a particularly interesting solution,
though it can require solving difficult problems that arise when scaling up algorithms to
handle larger data sets. The continued improvement of performance in speech recognition
and machine translation due to language model training on extremely large training sets
(Emami et al. 2007; Popat et al. 2007) illustrates the extent to which sparse data has been
impacting language models. Even what have been considered very large corpora in the past do
not provide adequate training for multinomial n-gram models with millions or even billions
of parameters. In Popat et al. (2007), for example, the models have hundreds of billions
of parameters (corresponding to n-gram features of various orders), which are trained on
corpora of several trillion tokens; they find a linear gain with each doubling of the training
data, with no indication of a plateau.

In this chapter, we will focus on language modeling improvements in large vocabulary
continuous speech recognition (LVCSR) that are not due to an increase in the amount of
training data, but rather to improvements in the other two dimensions of the problem that were
identified in the previous paragraph: optimization of parameters with respect to objectives
more closely related to actual system objectives; and the inclusion of a large number of
heterogeneous feature sets derived from the output string hypotheses.

Neither of these two considerations is new to research in language modeling for LVCSR.
It was suggested in Jelinek (1996) to train an ‘acoustic-sensitive’ language model whose
parameters would be trained to minimize the expected uncertainty of the spoken text given the
acoustic signal. Discriminative training methods that were successfully pursued for acoustic
modeling, such as MMIE (Bahl et al. 1986) or related error-corrective training methods
(Bahl et al. 1993; Juang et al. 1997), spurred initial research into discriminative modeling
approaches such as those of Chen et al. (2000), Stolcke and Weintraub (1998) and Stolcke
et al. (2000), with modest utility. In addition, generative maximum entropy models have
been explored for combining diverse features within a single model (Khudanpur and Wu
2000; Rosenfeld et al. 2001), including n-grams, topic labels and syntactic features. Thus the
notion of exploiting diverse feature sets is not new to the field; and neither are discriminative
approaches to parameter estimation.

Over the past few years, however, there has been a renewed effort in this direction, driven
in large part by developments in the machine learning community. The benefits of global
conditional modeling for sequence learning (Lafferty et al. 2001) and the application of large
margin methods to sequence processing through the Perceptron algorithm (Collins 2002;
Freund and Schapire 1999) have provided a unifying framework within which many related
methods can be pursued and compared. The learning and inference algorithms associated
with some of these approaches are efficient enough to be scaled up, so that models making
use of very large feature sets can be effectively trained and used for inference. Well-motivated
and theoretically grounded regularization techniques have been shown to effectively control
for the overtraining that language models have long suffered from. Strong empirical gains
have been realized on difficult tasks and continue to be realized up to the present within this
paradigm.
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This chapter addresses discriminative language modeling approaches in general, not
kernel approaches in particular. The approaches that are the focus of this chapter do not
represent the only strand of research focused on leveraging competing LVCSR system
hypotheses to achieve reductions in error rate. The approaches we describe here are focused
on training models with a discriminative objective function, not inference techniques for
optimizing an objective. Hence approaches such as Minimum Bayes-Risk classification (Goel
and Byrne 2000) or confusion networks (‘sausages’) (Mangu et al. 2000) will not be covered
here, although methods exist for learning their edit distance (Shafran and Byrne 2004).1 Note
that inference using such techniques can also be pursued with models trained as presented
here, hence the techniques are complementary. We will also omit any detailed discussion
of methods that perform post-processing on LVCSR output to correct specific errors, such
as induction of transformational rules on the output (Mangu and Padmanabhan 2001) or
methods for proposing alternatives that are not present in the system output and choosing
between them (Ringger and Allen 1996; Zhou et al. 2006b). Again, such methods could
also be applied to the output of systems using models trained with methods presented in this
survey, hence they are complementary to what will be discussed here. Also, we have chosen to
focus on large vocabulary systems, hence will not discuss the application of similar methods
in small vocabulary applications, e.g. that in Kuo et al. (2002).

8.2 General Framework

Most of the work covered in this chapter falls within the general framework of linear models,
which we present here largely following the notation of Collins (2002), much as presented
in Roark et al. (2007). These approaches assume the presence of several components, as
follows.

First, these are supervised approaches, hence requiring the presence of training data,
consisting of a set of m input sequences x̄i ∈ X and corresponding reference (ground truth)
output sequences ȳref

i ∈ Y , where X denotes the set of possible inputs and Y the set of
possible outputs. In the case of language modeling for LVCSR, using a vocabulary �, the
input set X consists of acoustic samples, the output set consists of all possible transcriptions,
i.e. Y =�∗, and the reference (ground truth) output sequence for any given utterance is the
manual (human) transcription of that utterance.

Next, for each input sequence x̄ ∈ X , the approaches require some mechanism for
identifying a set of output candidates, which is often denoted as a function GEN(x̄)⊆ Y .
For example, GEN(x̄) could be the word lattice output or n-best list from a baseline LVCSR
system.

Third, there must be a mapping from each input:output pairing (x̄, ȳ) ∈ X × Y to a real
valued d-dimensional feature vectorψ(x̄, ȳ) ∈ R

d , for some d . In the current case, this could
be a mapping from a string to the set of n-grams of order ≤ k that occur in the string. An
example feature would then be something like ‘feature 1236: number of times the bigram
“dog house” occurs in the string’. Each explicit n-gram to be included in the model would be
a separate feature in the vector.

1The methods for learning the edit distance used in such techniques are focused on learning a weighted
transduction between reference transcripts and LVCSR system outputs. This learned transduction can be seen as
a form of discriminative language modeling, since it effectively moves the centroid closer to the reference.



120 AUTOMATIC SPEECH AND SPEAKER RECOGNITION

Finally, there must be a real valued parameter vector α ∈ R
d of the same dimension d as

the feature vector. For example, feature 1236 mentioned above may have a parameter value
of 0.2 assigned to it. Methods for determining the parameter values associated with each
feature are perhaps the key difference between many of the different approaches that will be
presented here, though they are all discriminative rather than generative approaches.

Given these four components, we can define the best scoring (or 1-best) output ȳmax
i for a

given input xi as

ȳmax
i = argmax

ȳ∈GEN(x̄i)
ψ(x̄i , ȳ) · α, (8.1)

where ψ(x̄i , ȳ) · α is the dot product.
In the remainder of this section, we will focus on each of these four components in turn,

highlighting some of the key trends and variations in the work from this area.

8.2.1 Training Data and the GEN Function

Training data for discriminative language modeling consists of input speech recordings and
reference output strings representing the gold standard transcription of the speech. The role
of the GEN function is typically taken by a baseline LVCSR system, so that GEN(x̄) for
some input speech is an n-best list or word lattice. Hence most discriminative language
modeling approaches fall within the range of approaches more traditionally known as
n-best or lattice rescoring. Working from lists and lattices, however, is not a requisite part of
the approach, and some recent papers (Kuo et al. 2007; Lin and Yvon 2005) have modified
the weights directly within the baseline recognition system, rather than adopting a rescoring
or reranking paradigm. See Section 8.2.2 for further details on directly updating the baseline
recognition system, where it is discussed as a method for encoding features to allow for
efficient processing.

The output of LVCSR systems can be thought of as weighted, acyclic finite state automata,
with words and weights labeling the arcs. Figure 8.1 shows three kinds of representation of
weighted output from an LVCSR system. For all such weighted automata, the semiring must
be specified, so that the weights can be interpreted. The automata in Figure 8.1 are in the
Real semiring, meaning that the weights along a path are multiplied, and when two paths
are combined, their weights are added, which is the appropriate semiring when dealing with
probabilities.2 In the figure, the weights define a conditional probability distribution over
three possible strings: ‘a b c’ with probability 0.3; ‘a g c’, with probability 0.3; and ‘e d c
c’, with probability 0.4. Although the weights are presented as conditional probabilities, they
can be arbitrary.

Not all weighted finite-state automata (WFA) can be determinized, but any acyclic WFA
can be determinized (Mohri and Riley 1997). The result of determinization on the n-best
list automaton in Figure 8.1(a) is the deterministic tree in Figure 8.1(b). As with the original
representation, a candidate string is represented by the concatenation of symbols labeling the
arcs of any path from the start state at the left to a final state denoted with a double circle.

2The most common semirings in speech processing are the Tropical and Log semirings, both of which are
appropriate for negative log probabilities. Both add weights along the path. The Tropical semiring takes the min of
two weights when combining paths, and the Log semiring takes the log of the sum of the exponentials: A⊕ B=
− log(exp(−A)+ exp(−B)).
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(a) (b) (c)

Figure 8.1 Three weighted, acyclic finite-state automata representations of the output from
a speech recognizer: (a) n-best list; (b) deterministic tree; (c) deterministic word lattice. The
automata are in the Real semiring, and all three represent the same weighted distributions
over the three strings.

What is key to notice from these figures is that determinization preserves the path weight of
every path in the automaton. Recall that weights are combined along a path in the Real
semiring by multiplying. Inspection will verify that all three of the paths in the original
automaton are present in the deterministic tree representation with the same path weight.

Deterministic WFA can be minimized, i.e. converted to a representation of exactly the
same weighted paths, but with a minimal number of states and arcs to represent it (Mohri
and Riley 1997). For the current example, this minimized WFA is shown in Figure 8.1(c).
These are word lattices, which are simply a more compact representation of a set of distinct
weighted hypotheses output from the LVCSR system. Efficient use of this kind of compact
representation allows for effective rescoring in scenarios where brute force enumeration
of all distinct candidates would be intractable. Effective use of these representations,
however, precludes the use of global features, unless they can be decomposed for dynamic
programming. Some approaches to discriminative language modeling, e.g. those making
use of long-distance dependencies uncovered via context-free parsing, will be forced to
operate on undeterminized or unminimized n-best representations, which limits the number
of candidates that can be tractably scored.

There are a couple of reasons to introduce WFA representations in this context. First, they
become important in the next section, when efficient feature mapping is discussed. Also, it
should be clear from the discussion that there is no difference between n-best lists and word
lattices, other than determinization and minimization – they both represent sets of competing
(weighted) candidate transcriptions. Even 1-best output of a system is a special case of these
acyclic WFA. Hence we can discuss the approaches in general, without having to specify
whether the data is in the form of n-best lists or lattices. We will thus henceforth refer to them
simply as lattices, which may or may not be determinized or minimized. General operations
on WFA can be used to specify operations on the lattices, including intersection, composition
with a transducer, and finding the minimum cost (or highest scoring) path.

Note that working within a reranking or rescoring paradigm has a few immediate
ramifications for the general modeling framework we are presenting. Most critically, it is not
guaranteed in this approach that the reference transcription is present in the lattice. Second,
if training lattices are produced for utterances that were also used for building the models
of the baseline recognizer, this may introduce a mismatch between training conditions and
testing conditions. These are two key issues investigated in Roark et al. (2004a, 2007), and
we discuss them here in turn.
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(a) Reference Transcript

If the reference transcript for a particular utterance is not in the lattice output in the training
data, then standard parameter estimation algorithms will be trying to achieve an objective that
cannot be reached. These parameter estimation algorithms will be discussed in Section 8.2.3,
but, intuitively, an algorithm (such as the Perceptron algorithm) that penalizes candidates
other than the gold standard (reference) will move parameters to penalize every candidate if
the gold standard is not in the set of candidates, even the highest accuracy candidate in the
whole set.

One quick fix to this problem would be to append the reference transcript to the set of
candidates in the training set. The main problem with this is that it creates a great mismatch
between the training condition and the testing condition, in that the training examples are
being given better candidate sets than will be seen under testing conditions. Of lesser
significance is the problem of acquiring features derived from the baseline LVCSR system for
the reference transcript, if it was not one of its candidates. For example, the baseline system
score is typically a useful feature in the model. Obtaining the baseline system score for the
reference may require having some access to the baseline system models, to constrain the
decoder to output the reference.

A better solution is to define the gold standard candidate in terms of maximum accuracy
or minimum error rate. Then, if the reference is in the candidate set, it will be the gold
standard; otherwise, another candidate from the set is chosen as the gold standard, to avoid
the problems with parameter estimation. When the reference is present in the lattice, the
gold standard is unique. If the reference is not present in the lattice, then there may not be
a unique gold standard: more than one candidate may have the minimum error rate. The
results in Roark et al. (2004a, 2007) empirically validate the utility of using a minimum error
rate gold standard versus a reference gold standard in the Perceptron algorithm. In those
papers, one gold standard is chosen from among the set of minimum error rate candidates; in
Singh-Miller and Collins (2007), all members from the set were collectively used as the gold
standard in a loss-sensitive version of the Perceptron algorithm. See Section 8.2.3 for more
details about parameter estimation when the reference is not in the lattice.

Note that this is also an issue when training outside of a rescoring or reranking paradigm,
as noted in Kuo et al. (2007), even with known training data. If the vocabulary is pruned,
there will be out-of-vocabulary (OOV) terms in the references which the closed vocabulary
LVCSR system cannot recognize. One method for decreasing the OOV rate in any of these
training scenarios, however, is to map terms to ‘equivalent’ items that are in the vocabulary,
e.g. legal spelling variations.

(b) Seen Versus Unseen Data

The second issue that was mentioned regarding the training data is the potential mismatch
between training and testing scenarios when training lattices are produced on previously seen
data. This is an issue with any kind of a reranking problem, and similar solutions to the one
that will be discussed here have been used for other such problems, e.g. Collins (2000). In
fact, the problem is to minimize mismatch, because most problems have a constrained amount
of supervised training data (with both input and output sides of the mapping), hence the same
data will often be used both for training the baseline models and for training discriminative
language models. It is well-known that n-gram language models are overparameterized and
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overtrained; the result of this is that the LVCSR output for seen data will have fewer errors
than the output for unseen data, and those errors that do occur may differ from the kinds of
error observed for unseen data. The discriminative reranking model will then learn to solve a
different problem than the one that will be encountered at test time. To obtain a useful model,
the mismatch needs to be reduced by producing training lattices in an unseen condition.

An unseen condition can be achieved through cross-validation, whereby the training data
is split into k subsets, and the baseline models for each subset j are trained on the other
k−1 subsets (1, . . . , j − 1, j + 1, . . . , k). Note that this can still result in a mismatch,
because the testing condition will use baseline models trained on all k subsets. The hope
is that, if k is large enough, the difference in performance when training on the extra section
will be relatively small, particularly compared with the difference in seen versus unseen
performance. Again, the results in Roark et al. (2004a, 2007) empirically validate the utility
of cross-validating the baseline language model training: not cross-validating resulted in
models that achieved no gain over the baseline system, whereas cross-validation produced
significant word-error rate (WER) reductions of over 1% absolute.

While the presentation here has been on the importance of cross-validating the models
used in the baseline systems, previous work has only examined the utility of cross-validating
the language models, not the acoustic models. The reasons for this are twofold. First,
conventional wisdom is that acoustic models, by virtue of having far fewer parameters than
language models, tend not to overtrain to the same degree, so that the seen/unseen difference
in performance is relatively small. Second, while baseline n-gram models are relatively
easy and fast to train (even for large corpora), since they typically use relative frequency
estimation and simple smoothing to estimate the parameters, acoustic model training is a far
more intensive process, so that training a baseline acoustic model on a large training corpus
may take many days or more on multiple processors. Hence the cost of cross-validation is
high and the perceived benefit low. Even so, it would be of interest to know exactly how
much mismatch exists between seen and unseen data with respect to the acoustic model,
and whether this may actually impact the utility of training data for discriminative language
modeling.

8.2.2 Feature Mapping

The third component of the general framework that we are presenting is the mapping
from input/output pairs (x̄, ȳ) to a feature vector ψ(x̄, ȳ) ∈R

d . In the current context,
there are two scenarios that we have discussed: reranking from lattices; and updating the
baseline LVCSR system directly. We will first discuss feature mapping for reranking, where
candidates are represented as an acyclic WFA of candidates; then for direct update of the
system.

For reranking, one approach to feature mapping is to simply perform feature mapping for
each candidate transcript independently. For example, if an existing statistical parser were to
be applied to the strings and the result used to extract features, then the particular parser may
not be able to handle anything other than a string at a time. This requires explicit enumeration
of all candidates, which will limit the number of candidates that can be considered for any
given utterance.

A more efficient strategy is to take advantage of shared structure in a word lattice to extract
features without having to explicitly enumerate every path in the lattice. This is particularly
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important in LVCSR, where the number of competing hypotheses can be in the hundreds
of thousands or millions, and the feature set in the several millions. N-gram features are
popular in large part because they have an efficient finite-state structure, and this structure
can be exploited for efficient feature mapping that allows for large lattices to be rescored,
rather than small n-best lists. We will use a toy example to illustrate this. For more details on
n-gram model structure, see Allauzen et al. (2003) and Roark et al. (2004a,b, 2007).

For simplicity, assume a vocabulary � = {a,b,c}, and all strings consist of one or more
symbols from that vocabulary in sequence (�+). The output symbols will be feature indices,
which we will denote fk for feature with index k. For this example, let us assume the following
unigram and bigram features: {f1 = a; f2 = b; f3 =<s>a; f4 =<s>b; f5 = aa; f6 = ab; f7 =
a</s>; f8 = ba; f9 = bb; f10 = b</s>}. Note that the begin-of-string symbol (<s>) and
end-of-string symbol (</s>) are implicit in the string and not part of the vocabulary. One
can see by inspection of this set that there are all unigram and bigram features including the
symbols ‘a’ and ‘b’, but none including the symbol ‘c’, hence those n-grams will not map to
any feature in the set.

The finite-state transducer in Figure 8.2(a) maps from strings in {a,b,c}+ to feature indices
from this set. The start state (denoted with> to its left) implicitly encodes the begin-of-string
symbol, hence the first symbol in the string will be in a bigram beginning with <s>. There
are two special symbols in the transducer: φ, which represents a failure transition; and ε,
which represents the empty string. An arc labeled with φ is traversed if and only if there is
no arc leaving the state that is labeled with the next symbol in the input. No input symbols
are consumed or output symbols emitted when the φ transition is traversed. An arc with
an ε symbol labeling the input side can always be traversed without consuming an input
symbol, while outputting the symbol on the output side. An arc with an ε symbol labeling the
output side produces no output while consuming the symbol on the input side. When final
states (denoted with double circle) are reached and there is no more input, the transduction is
successful.

Let us step through a couple of examples. First the simple string ‘acb’, which we will
compose with transducer T1 from Figure 8.2(a). Beginning at the start state, there is an arc
labeled with ‘a’ on the input side, with f3 on the output side. From the destination state of
that arc, there is no arc with ‘c’ on the input side, so the failure transition (labeled with φ)
is traversed. From the destination state of that arc, there is an arc with ‘c’ on the input side,
which is a looping arc with ε (empty string, i.e. no feature) on the output side. The transition
from that state with ‘b’ on the input side has f2 on the output side. The destination state of
that arc is not a final state, but there is a transition with an ε on the input side which can be
traversed, which gives f10 on the output side and reaches a final state. Hence this transduction
gives the features: f3, f2 and f10. This is not, however, the total feature set, but rather the
highest order n-grams reached at each word. For example, feature f3 is the bigram ‘<s>a’,
but there should also be the unigram feature f1 associated with the ‘a’. In order to derive
the total feature set based on the highest order features, we compose the output sequence
to the transducer T2 in Figure 8.2(b). In that transducer, all features map to themselves, but
additionally all bigram features ending in an ‘a’ or ‘b’ then also map to the appropriate
unigram feature. The complete transduction from a string S to the feature set is S ◦ T1 ◦ T2,
where ◦ denotes the composition of finite-state transducers.

Note that these are both deterministic on the input side, i.e. every string in {a,b,c}+
has one and only one path through T1 ◦ T2. It should be straightforward for the reader
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(a) (b)

Figure 8.2 String sequence to feature set transducers: (a) from symbols to highest order
features; (b) from highest order features to total set of features.

to verify that the input string ‘bbacb’, when composed with T1 ◦ T2, yields the feature
sequence f4f2f9f2f8f1f2f10. Because this feature mapping uses standard finite-state transducer
transduction, word lattices encoded as finite-state automata can be composed with these
transducers, to produce output sequences for every path in the lattice corresponding to
features in the feature set. Multiple paths that share part of their structure will not need to be
mapped independently of each other, as they would be in non-deterministic representations
of n-best lists.

Note that, at test time, the feature identities are not of interest, but rather the scores of
the paths in the lattices, so that the best scoring candidate can be found. There is also a
compact finite-state automaton that can score the lattice with n-gram parameter weights,
without requiring transduction to the feature labels. The automaton in Figure 8.3 is in the
Tropical semiring (sum weights along a path), and makes use of roughly the same topology as
the transducer in Figure 8.2(a). Note that all arcs corresponding to bigram features must have
the sum of both the bigram feature weight and the corresponding unigram feature weight.
Parameter weights associated with bigrams containing the end-of-string symbol are encoded
in the final weight of the corresponding final state. Similar structure is used when going to
n-grams of higher order than bigrams. See Roark et al. (2004a,b, 2007) for more information
about such finite-state n-gram model encoding.

Finite-state transducer encoding of the model is also a central topic in the recent work
looking at direct updating of parameters in the baseline LVCSR model rather than reranking
(Kuo et al. 2007; Lin and Yvon 2005). These works adopt an approach to efficient LVCSR
that involves building a finite-state ‘decoding graph’ off-line and performing optimizations
on this transducer, as described in detail in Mohri et al. (2002). The decoding graph is the
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Idx Param Feature

1 α1 a
2 α2 b
3 α3 <s>a
4 α4 <s>b
5 α5 aa
6 α6 ab
7 α7 a</s>
8 α8 ba
9 α9 bb

10 α10 b</s>

Figure 8.3 Deterministic automaton reading in symbols and assigning parameter weights.

result of combining an automata representation of an n-gram language model (G) with a
pronunciation dictionary represented as a finite-state transducer (L) and decision tree models
that split the phones in the pronunciations into context-dependent (CD) phone representations
(C). The composition of these weighted transducers3 C ◦ L ◦G results in a single transducer,
which serves to guide decoding. Optimizations to this graph, such as determinization on the
input side and weight pushing, can result in a far more efficient search than combining these
models on-the-fly during search.

The idea pursued in Lin and Yvon (2005) and extended to full context-dependent LVCSR
systems in Kuo et al. (2007) is to directly update transition weights within the decoding
graph. To do this, they determine the state sequence through the decoding graph of the
reference transcription by optimally force aligning the transcription with the speech. Training
in Kuo et al. (2007) is an on-line procedure discussed in Section 8.2.3 that compares the best
scoring state sequence with the state sequence derived from the reference, and updates the
transition weights accordingly. Hence each transition weight in the graph is an independent
feature within a log linear framework.

This approach to feature mapping brings up some interesting questions. First, what is
discriminative language modeling? In this instance, the features include context-dependent
phone identities as part of the state definition, and stochastic modeling of such features is
typically outside the range of language modeling. While it is not the intent of this chapter to
try to philosophically delimit the scope of this topic, it seems clear that the transition weights
in these graphs represent discrete symbol sequences rather than the Gaussian densities
modeled at the states, hence are certainly modeling the language not the acoustics. However,
it highlights the fact that there is little in this general framework to limit the kinds of features
that might be used, and that future work may find hybrid feature sets – e.g. for combining
syntactic and prosodic features – that will lead to substantial system improvements.

The second question that arises is, what do these features represent? The input stream
of the transducer is labeled with context-dependent phones, and the output stream is
labeled with words in the vocabulary, so in its simplest form, these features represent

3Note that an automaton is a special case of a transducer where every symbol maps to itself.
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(CD phone×word) sub-sequences. These graphs, however, are optimized to increase the
amount of shared structure between words with similar CD phone realizations, hence the
transitions themselves may represent CD phones over sets of n-grams. These complicated
composite features do appear to have strong utility for this task (see Kuo et al. (2007) for
empirical results), and they capture key distinctions that are clearly lost in most language
modeling approaches. The downside of this approach is a loss of generalization from one
phone sequence realization of a word sequence to another realization of the same word
sequence. One could imagine an extension of this approach that treats arcs as features, but
also includes raw n-gram features, and updates arcs in the graph with respect to all relevant
features. In such a way, the benefits of this approach could be achieved while also gaining
generalization to other pronunciations of the same n-gram.

8.2.3 Parameter Estimation
The final component to the general framework is the parameter estimation algorithm, for
choosing a parameter weight vector α ∈R

d . Here any technique that has been used for log
linear modeling in other domains can be used, with the proviso that the method must scale to
very large problems. Language modeling for LVCSR is typically most effective with a large
number of candidates (at least in the hundreds) and a very large number of features (in the
millions). This means that there have been limited uses of resource intensive methods such as
Support Vector Machines (SVMs) (though see Section 8.3.3 for one example using SVMs).

Before getting into specific training objectives, it is probably worth spending a little time
to address a potential confusion of terminology. In language modeling, conditional models
have typically signified the conditional probabilities used via the chain rule to define the joint
probability of a string. For example, a standard trigram model is defined as the probability of
a word conditioned on the previous two words. In the current context, however, conditional
models do not denote the local conditional probabilities that are used to define the joint
generative probability, but rather denote the likelihood of the string given the input utterance.
This sort of conditional model is discriminative.

Given the popularity of Maximum Mutual Information Estimation (MMIE) for acoustic
modeling (Bahl et al. 1986), which has a conditional likelihood objective in the sense we are
using here, direct applications of such techniques have been pursued for language modeling.
As in prior work of Stolcke and Weintraub (1998), Chueh et al. (2005) examines a log
linear model which maximizes an unregularized conditional likelihood objective. Linguistic
(n-gram) features of the model are combined with a baseline acoustic model score, which
can be thought of as just another feature in the model. If ȳref

i is the reference output for
speech input x̄i , then the conditional log likelihood of the training data of m utterances given
a feature mapping ψ and parameter vector α is

LogLike(α)=
m∑
i=1

log P(ȳref
i | x̄i)

=
m∑
i=1

log

(
exp(ψ(x̄i , ȳref

i ) · α)∑
ȳ∈GEN(x̄i) exp(ψ(x̄i , ȳ) · α)

)

=
m∑
i=1

(
ψ(x̄i , ȳ

ref
i ) · α − log

∑
ȳ∈GEN(x̄i )

exp(ψ(x̄i , ȳ) · α)
)
. (8.2)
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This is a convex function, and hence the α that maximizes the log likelihood can be found
through standard techniques relying on the gradient (see below).

One key problem with this approach is overtraining, which, as usual with language
modeling, is severe and has led to little or no system gain for approaches pursuing it as
presented above (Chueh et al. 2005; Stolcke and Weintraub 1998). With millions of features,
the opportunity for overtraining is much greater for language modeling than for acoustic
modeling, hence some method for controlling for overtraining (regularization) needs to be
added to the training approach in order to improve generalization to new data. Of course,
the reasons why these models provided little or no gain in system performance may also
be related to some of the issues in training data preparation presented in Section 8.2.1, but
certainly lack of regularization also contributed. Similar lack of system improvement was
observed in Paciorek and Rosenfeld (2000) when using Minimum Classification Error (MCE)
training (Juang et al. 1997) for language model training, as well as in Kuo and Chen (2005)
when using Minimum Word Error (MWE) training (Povey and Woodland 2002). Direct
application of popular acoustic model training approaches have thus not been successful,
and a large reason for this is almost certainly lack of appropriate model regularization.

Adopting regularization techniques from other sequence modeling work making use of
global conditional likelihood optimization (Johnson et al. 1999; Lafferty et al. 2001), the
regularized objective in Roark et al. (2004b, 2007) becomes

RegLogLike(α)=
m∑
i=1

(
ψ(x̄i, ȳ

ref
i ) · α − log

∑
ȳ∈GEN(x̄i)

exp(ψ(x̄i , ȳ) · α)
)
− ‖ α ‖

2

2σ 2 ,

(8.3)

which is the common zero-mean Gaussian regularizer that imposes a penalty within the
objective as the magnitude of the parameter values grow. This is also a convex function, thus
guaranteeing convergence to the globally optimal solution. The derivative of this function
with respect to any given parameter αk is

∂ RegLogLike(α)

∂αk
=

m∑
i=1

(
ψk(x̄i , ȳ

ref
i )−

∑
ȳ∈GEN(x̄i )

P(ȳ | x̄i)ψk(x̄i , ȳ)
)
− αk

σ 2 . (8.4)

The empirical results in Roark et al. (2004b, 2007) validate that the unregularized global
conditional likelihood objective in Equation (8.2) did not lead to any system improve-
ments, while the regularized objective in Equation (8.3) does provide statistically significant
improvements over the baseline, using an empirically chosen regularization parameter σ .
The gradients of the n-gram features in that work were efficiently extracted from large
word lattices using general finite-state techniques, which enabled the approach to be scaled
up to over 10 million features, using lattices encoding a very large number of candidate
transcriptions, for a training corpus consisting of hundreds of hours of speech.

Another technique adopted from the recent machine learning literature is the averaged
Perceptron (Collins 2002; Freund and Schapire 1999), which was shown to provide signif-
icant word-error rate reductions over a baseline LVCSR system in Roark et al. (2004a) and
was later compared with global conditional likelihood optimization in Roark et al. (2004b,
2007). The reader is referred to the cited papers for a formal presentation of the algorithm.
Informally, this is an on-line algorithm that initializes parameters at zero and updates the
parameters after every example as follows: using the current model, find the best scoring
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candidate of the current example (ȳmax
i ); then update the parameters by penalizing features

extracted from ȳmax
i and rewarding features extracted from ȳref

i , the gold standard. Thus, the
parameter update at example (x̄i , ȳref

i ), in its simplest form, is

α[i] = α[i − 1] + ψ(x̄i , ȳref
i )− ψ

(
x̄i, argmax

ȳ∈GEN(x̄i )
ψ(x̄i , ȳ) · α[i − 1]

)
, (8.5)

where α[i − 1] is the parameter vector from the previous time step.4 Of course, if ȳref
i =

argmaxȳ∈GEN(x̄i) ψ(x̄i , ȳ) · α[i − 1], then the parameters are unchanged.
Like the conditional likelihood optimization, this approach is prone to overtraining,

hence requires some regularization. The most common technique used for these models is
averaging the parameters over the models at every timestep of the algorithm. The averaged
parameter avgi (αk) at time i is defined as

avgi (αk)=
1

i

i∑
j=1

αk[j ]. (8.6)

The raw parameter values are used while training the model, but this averaged parameter
value is then used for evaluating the model on held aside or test data. Typically, some held-
aside data is evaluated after every iteration over the training data, to determine when to stop
training.

One benefit of Perceptron training versus regularized conditional likelihood optimization
is that the Perceptron training typically arrives at a more parsimonious solution, i.e. the
number of features with non-zero parameter weights are fewer, at least with commonly used
regularizers. The reason for this is clear – parameters can only be updated in the Perceptron
algorithm if the feature is extracted from either the gold standard candidate ȳref

i or the best
scoring candidate ȳmax

i , hence many features never move away from their initial values of
zero. In the comparisons between Perceptron and conditional likelihood optimization in
Roark et al. (2004b, 2007), the conditional likelihood estimation resulted in larger gains over
the baseline than the Perceptron estimation, but the Perceptron was useful as an initial step
prior to the conditional likelihood optimization, both for initializing parameter weights for
fast convergence and for selecting features to include in the model.

Recent work has looked at improving on Perceptron language model training by intro-
ducing loss-sensitivity to the on-line parameter update in Equation (8.5). In the approach
of Singh-Miller and Collins (2007), the contribution of an example to the change in the
parameter values is based on a loss value, which in the cited paper is taken as the number
of errors beyond the minimum error rate hypotheses in the n-best lists. Features extracted
from highly errorful hypotheses will be more heavily penalized. In addition, this approach
provides a well-motivated way of dealing with multiple candidates with the same minimum
error rate in the set of candidates. The previously discussed (Section 8.2.2) work in Kuo
et al. (2007) also uses an on-line parameter estimation approach related to the Perceptron
algorithm, where the magnitude of the parameter value update is determined via a sigmoid
function.

While the above-mentioned parameter estimation techniques make use of well behaved
(convex) functions, the objectives are not precisely what is typically evaluated, which is

4The algorithm may perform multiple passes over the training data, so the index i may indicate the number of
updates, rather than the absolute example number in the corpus.
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word-error rate (WER): the number of insertions, deletions or substitutions per 100 words
of reference text. The global conditional likelihood approach is maximizing the (regularized)
conditional likelihood of the gold standard; and the Perceptron is optimizing the string
error rate rather than the WER. MWE training (Povey and Woodland 2002) optimizes a
continuous function more closely related to error rate than either of these two objective
functions, so perhaps a regularized version of that would be worth investigating. Others
have tried methods of optimizing the WER function directly, which cannot be done with
any guarantees of convergence or finding a global optimum. For example, minimum sample
risk training (Gao et al. 2005) performs a greedy search of parameterizations by performing
a line search along each dimension in sequence. Although no guarantees are given for finding
an optimal solution, reported empirical results (Gao et al. 2005) are competitive with other
methods such as Boosting and the averaged Perceptron. Similarly unguaranteed parameter
search techniques were used in Banerjee et al. (2003) to update bigram parameter weights
for word-error reduction.

We have presented a basic, general characterization of how these sorts of problems
can be approached, and have pointed to specific papers pursuing specific versions of this
general approach. Some of these have achieved relatively large improvements (more than 1%
absolute) over baseline LVCSR systems, using just n-gram features. In the following section,
we will survey some extensions to the basic approach, in three key directions: novel features;
novel objective functions; and within the context of domain adaptation.

8.3 Further Developments

8.3.1 Novel Features

Up to now, we have discussed models that rely on n-grams as features alongside the baseline
model score, or treat arcs within a decoding graph as features, e.g. Kuo et al. (2007). In
this section, we point to three relatively recent papers that look to expand upon these simple
feature sets to achieve additional discrimination. Note that this sort of enterprise has been
notoriously difficult in generative language modeling for LVCSR, where WER reductions
due to features other than n-grams have been hard to come by.

Syntactic language models have been a topic of some interest over the past decade, with
some notable successes in achieving WER reductions, e.g. Charniak (2001), Chelba and
Jelinek (2000), Roark (2001) and Wang et al. (2003). In these works, generative context-
free (Charniak 2001; Chelba and Jelinek 2000; Roark 2001) or finite-state (Wang et al. 2003)
models are used to define a distribution over strings that can be used as a language model.
Within a discriminative language modeling framework, however, Collins et al. (2005) used
a generative context-free parsing model not to derive a score, but rather to derive a syntactic
annotation which was then used within the feature mapping ψ for discriminative modeling
with the Perceptron algorithm. Example features included part-of-speech (POS) and shallow
parse sub-sequence features; context-free rule instances in the parses; and bilexical head-
to-head dependencies. This stands in marked contrast to the generative models, where the
generative model scores were used for modeling and the structural annotations were an
unused byproduct. The WER reductions in Collins et al. (2005) were statistically significant
(though modest) versus just using n-gram features, and most of the reduction was achieved
with POS-tag sequence features.
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A similar approach was taken for incorporating morphological features into language
models in Czech (Shafran and Hall 2006). Unlike generative morphology-based language
models, which have been used profitably in, for example, Arabic speech recognition
(Vergyri et al. 2004), the use of the kinds of sub-word features that morphological analysis
affords does not necessitate complicated smoothing techniques. Rather, the annotations from
morphological analyzers can be used within the feature mapping to provide additional
features in the model. This is particularly important in highly inflected or agglutinative
languages, and promises substantial improvements in such languages, as demonstrated in
Shafran and Hall (2006).

One key issue in discriminative syntactic and morphological language modeling
approaches is feature selection. Features can be derived from rich structural annotations in
many ways, which can lead to an astronomical number of potential features in the model.
Features were selected in Shafran and Hall (2006) via a χ2 statistic derived from the co-
occurrence of features and the classes of interest, in this case ‘correct’ and ‘incorrect’
candidates. A large χ2 statistic indicates a high correlation between a feature and either the
set of correct candidates or the set of incorrect candidates, hence indicating that the feature
would have high discriminative utility.

Trigger features (Lau et al. 1993) are a way of capturing the bursty and topical nature
of language – if a word is observed, then there is typically a high likelihood of that word
occurring again or related words occurring. A self-trigger is a feature that exploits an
instance of a word or term to increase the likelihood of observing another, or in the case
of discriminative models, to reward candidates that have the triggered term. In Singh-Miller
and Collins (2007), self-triggers of various sorts were used within a loss-sensitive Perceptron
modeling framework to reduce WER significantly over using just n-gram features. To do
so, they define a history h of previous utterances in the conversation, and derive trigger
features based on unigrams and bigrams that either a) occur multiple times in the candidate
transcription; or b) occur in the candidate transcription and in transcriptions in the history h.
In addition, they create backoff bins of unigrams and bigrams based on TF-IDF statistics, and
derive another set of features based on these bins, as a way of tying the parameters for words
that are similarly distributed. The combination of raw and binned trigger features, along with
standard n-gram features, resulted in the best performing system.

Real gains are being achieved by expanding the feature set beyond simple n-gram features,
and the discriminative language modeling paradigm that we have been presenting is a natural
framework for work on novel methods for feature extraction and selection.

8.3.2 Novel Objectives

While most research in LVCSR over the years has focused on WER as an objective,
it is increasingly becoming the case that speech recognition is a sub-process within a
larger application such as call-routing, spoken language understanding or spoken document
retrieval. Within such a scenario, discriminative language modeling approaches can be
applied with a downstream objective function in training rather than an objective function
based on the accuracy of the speech recognition itself. This sort of optimization can
occur within the context of generative language model estimation, as with the spoken
language understanding applications in Goel (2004) and Goel et al. (2005), in which bigram
probabilities were iteratively re-estimated to improve utterance annotation (Goel 2004) or
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call-routing (Goel et al. 2005) performance. Discriminative language modeling methods,
however, allow for great flexibility of feature mapping along with direct optimization of such
an objective.

In Saraclar and Roark (2005, 2006), utterances within a call-routing application were
annotated with class labels (97 classes), and discriminative language model estimation
was done using either the Perceptron algorithm (Saraclar and Roark 2005) or regularized
global conditional likelihood maximization (Saraclar and Roark 2006) for various objective
functions: a WER objective; an utterance class error rate (CER) objective; and a joint
WER/CER objective. Features included n-grams, class labels, and combination class label
and n-gram. Optimization of the joint objective led to a very slight (not statistically
significant) increase of CER versus training with an exclusively CER objective, but no
increase in WER was observed versus training with an exclusively WER objective. That is,
the trade-off inherent in a joint optimization came at the expense of CER rather than WER,
which is unsurprising given that each utterance consists of many words but receives just one
class label. Inclusion of the utterance class in the model achieved modest (though statistically
significant) improvements in WER versus just n-gram features, hence this can also be seen
as a method for increasing the feature set.

Given the growing interest in machine translation (MT) of speech, one might expect future
work in pushing MT objective functions back into LVCSR model training, and discriminative
language modeling of the sort described here is one way to achieve this. For example, the
presence or absence of phrases from a phrase table within a phrase-based MT system may
impact the final quality of translation, hence optimizing the LVCSR system to do a better job
of recognizing such phrases, perhaps at the expense of overall WER, which may result in
an overall system improvement. Similar approaches could be pushed in speech information
retrieval or other areas of spoken language understanding. Other than the papers discussed
here, we are unaware of any published results in this direction.

8.3.3 Domain Adaptation

All of the work discussed up to now has been within the context of in-domain trained systems,
but language model adaptation to novel domains is an area of great interest where they have
also been shown to have utility. An adaptation scenario does change a couple of key aspects
of the training that impact the best practices. First, to the extent that the new domain is not
part of the baseline training data (which is the whole point of domain adaptation) then the
issue of cross validating the training set to get training data is moot. However, there remains
the issue of the reference transcription not being in the lattice output of the recognizer.
In fact, the oracle accuracy of the lattice, i.e. the best possible accuracy achievable from
among the candidates, will likely be low for the novel domain, which can reduce the efficacy
of these discriminative approaches, relative to generative alternatives such as Maximum a
Posteriori (MAP) adaptation (Bacchiani et al. 2006; Gauvain and Lee 1994).

In Bacchiani et al. (2004), a large vocabulary general voicemail transcription system was
adapted for customer service support voicemail recognition. The baseline out-of-domain
training of roughly 100 hours was augmented with 17 hours of in-domain training data.
In a straight head-to-head comparison, MAP adaptation of the generative language model,
based on counts derived from the in-domain data, led to significantly larger improvements
in transcription accuracy over the baseline (nearly 8% absolute) than using the Perceptron
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algorithm (5% absolute). Note that the vocabulary was kept constant in this application, so the
MAP adaptation did not benefit from additional in-domain vocabulary. The hypothesis was
that the re-ranking nature of the Perceptron was hurting it, since the MAP adapted generative
model was used in the first pass, hence could find good candidate transcriptions that were not
in the word lattices produced by the baseline out-of-domain trained recognizer.

To remedy this, a hybrid of MAP adaptation followed by Perceptron reranking was
pursued in Bacchiani et al. (2004). Of course, once the in-domain data was included in
the baseline LVCSR training data, appropriate cross-validation techniques had to be used to
produce training lattices for the discriminative language model. The result of this approach
was an additional 0.7% absolute improvement versus using MAP adaptation alone.

In Zhou et al. (2006), several discriminative training algorithms were compared for
domain adaptation in Chinese LVCSR, including the Perceptron algorithm, boosting
(Schapire et al. 1998), ranking SVMs (Joachims 2002) and minimum sample risk (Gao et al.
2005, see Section 8.2.3). They found the Perceptron algorithm provided the best domain
adaptation (by more than 1% absolute), which they attributed to the large size of the feature
set chosen by the Perceptron algorithm relative to the other methods investigated. In addition,
they found that the ranking SVM took two orders of magnitude more training time than the
other methods.

What remain unexplored are semi-supervised adaptation techniques for this problem –
making use of in-domain text without recordings or recordings without transcriptions to
adapt language models using discriminative parameter estimation techniques. The flexibility
of generative adaptation approaches, such as MAP estimation, permits the opportunistic
exploitation of available resources for model training. Achieving such flexibility within
discriminative language modeling approaches is an important topic that deserves further
attention.

8.4 Summary and Discussion

In this chapter, we have presented a general discriminative modeling framework and its appli-
cation to language modeling for LVCSR. Nearly all of the work on discriminative language
modeling fits this general characterization, and it is useful for defining the dimensions within
which approaches differ. We have made an effort to be comprehensive in the survey, within
the scope declared at the outset of the chapter. Overall the number of papers that have been
written on this topic are relatively few, which can be attributed to a number of factors.

First, there are significant barriers to entry in researching this topic. Unlike other
application areas, such as machine translation, achieving state-of-the-art performance in
LVCSR is not accessible to researchers outside of a small number of research labs and
centers. The number of techniques that must be combined within a full-blown LVCSR
system to achieve this performance – including a range of acoustic modeling techniques in
multiple stages, first-pass large vocabulary decoding, speaker adaptation and lattice rescoring
techniques – are such that a researcher must expect a major time investment to even produce
the training data needed to explore discriminative language modeling. What should be a
priority within the speech community is to lower these barriers by making a large amount
of training and evaluation word lattices available for research purposes to the community
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at large. That would almost certainly spur researchers in machine learning and NLP to begin
applying their work in this domain.

It used to be the case that perplexity reduction was the primary mode for evaluating
language model improvements. Given the poor correlation between reductions in perplexity
and WER reduction, this is no longer widely accepted as a language modeling objective.
It did have the virtue, however, of allowing evaluation on text corpora, which meant that
research on language modeling could be conducted without access to LVCSR systems. For
the discriminative models presented here, this is no longer the case: LVCSR systems are
required for training data, and WER is the objective – perplexity cannot be calculated from
these models. One step towards increasing research on language modeling would be to make
word lattices from competitive LVCSR systems available to the community at large.

Even if such data were made available, however, this remains a very large and difficult
problem. Scaling up machine learning algorithms to handle problem spaces with many
millions of dimensions and training sets with millions or billions of examples (or more)
is a challenge. There is a reason for discussing finite-state methods in this survey, and that
is the scale of the problem. Coupled with the widespread perception that language modeling
for LVCSR is hopeless, these challenges present another kind of barrier to entry.

This is a shame, because there has been progress in language modeling in this direction,
and there remain a large number of very interesting and relatively unexplored directions in
which to take it, such as the topics in the following short list:

• semi-supervised techniques for leveraging large text corpora alongside the kind of
training data we have been discussing;

• further research on richer feature sets, such as syntactic features or hybrid acous-
tic/language features;

• feature selection and/or dimensionality reduction;

• scaling up compute intensive parameter estimation techniques.

This survey suggests that it is not unreasonable to foster the hope that real LVCSR system
improvements can and will be achieved along these lines over the next decade, to the point
where resulting techniques will become part of the collective best practices in the field.
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9

Large Margin Methods for
Part-of-Speech Tagging

Yasemin Altun

Part-of-Speech (POS) tagging, an important component of speech recognition systems, is a
sequence labeling problem which involves inferring a state sequence from an observation
sequence, where the state sequence encodes a labeling, annotation or segmentation of
an observation sequence. In this chapter we give an overview of discriminative methods
developed for this problem. Special emphasis is put on large margin methods by generalizing
multiclass Support Vector Machines (SVMs) and AdaBoost to the case of label sequences.
Experimental evaluation on POS tagging demonstrates the advantages of these models over
classical approaches like Hidden Markov Models (HMMs) and their competitiveness with
methods like Conditional Random Fields (CRFs).

9.1 Introduction

A language model is one of the two important components of speech recognition systems.
By assigning probabilities to sequences of words, the language model acts as setting a
prior distribution on what utterances can be produced. The acoustic model, which is the
second important component of speech recognition systems, defines a conditional probable
distribution of observing an acoustic signal given that a particular sequence of words is
uttered. The predominant approach in speech recognition, namely source-channel model,
combines the distributions given by these two system in order to maximize the joint
probability of the acoustic signal and the word sequence and in turn to minimize the error
rate.

Until the last decade, standard word-based n-gram models (i.e. n-gram models that are
trained generatively) were the most common tools for language models. One of the important
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improvements over these models came from the idea of class-based n-gram models (Brown
et al. 1992). These models outperform the word-based n-gram models when the training
data is small and sparse (Niesler and Woodland 1996b). Moreover, combining these models
with word-based models on large datasets improves the perplexity, which is the standard
evaluation criteria in speech recognition (Niesler and Woodland 1996a).

In class-based models, the classes can be defined either syntactically or semantically with
various refinement levels. In this chapter, we consider syntactic classes, in particular POS
tags. POS tagging is the process of marking up the words in a natural language text with their
corresponding grammatical type (part of speech) e.g. noun, verb, adjective, adverb, based
on the word itself as well as its context such as the adjacent words and the related words
in a phrase, sentence or paragraph. Given a sequence of words, we are interested in finding
the best POS tag sequence. Since neighboring POS tags give very informative statistics, we
model this task as a sequence labeling problem, where the goal is to learn a model that
uses both the input and the output context to make accurate predictions. In this chapter, we
consider bigrams of POS tags as output context; however, generalization to higher order
models is trivial. It is worthwhile to note that one can use the methods described in this
chapter to learn other class-based models, as long as they respect a sequence model.

An important design choice is how to train the class model, i.e. generatively (using
standard log-likelihood techniques) or discriminatively (using generalization of state of the
art discriminative learning methods). The generative approach models the joint distribution
of observation and label sequences and predicts a label sequence of an observation sequence
using the conditional probability obtained by the Bayes rule. This model is the well-known
HMMs. Efficient inference and learning in this setting often requires making questionable
conditional independence assumptions. More precisely, it is assumed that all dependencies
on past and future observations are mediated through neighboring labels which is clearly
violated in many applications (especially where long distance dependencies are important).
This is particularly true for POS tagging. The discriminative approaches overcome this
problem by either modeling the conditional distribution of the response variables given
the observation or by directly learning a discriminative function over the observation-label
sequence pairs such that the correct prediction achieves a higher score than other label
sequences. This approach provides more flexibility in modeling additional dependencies such
as direct dependencies of the tth label on past or future observations.

In this chapter, we formulate the sequence labeling problem and outline discriminative
learning methods for sequence labeling. In particular, we focus on large margin approaches.
We present the generalization of two of the most competitive large margin methods for
classification, namely AdaBoost and SVMs, to the problem of sequence labeling. These
methods combine the advantages of the discriminative methods described with the efficiency
of dynamic programming. We then apply our methods to POS tagging. Experimental
evaluation demonstrates the advantages of our models over classical approaches like HMMs
and their competitiveness with methods like CRFs.

9.2 Modeling Sequence Labeling

We are interested in the inference of a sequence of labels ȳ = (y1, . . . , yt , . . . , yT ) ∈ Y for
a sequence of observations x̄ = (x1, . . . , xt , . . . , xT ) ∈ X where T denotes the length of
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Table 9.1 POS tags used in the Penn TreeBank Project

Label Description Label Description Label Description

CC Conjunction CD Cardinal DT Determiner
EX Existential FW Foreign word IN Preposition
JJ Adjective (Adj) JJR Adj comparative JJS Adj superlative
LS List marker MD Modal NN Noun, singular
NNS Noun, plural NNP Proper noun, singular NNPS Proper noun, plural
PDT Predeterminer POS Possessive ending PRP Personal pronoun
PRP Possessive pronoun RB Adverb (Adv) RBR Adv comparative
RBS Adv superlative RP Particle SYM Symbol
TO To UH Interjection VB Verb
VBD Verb, Past VBG Verb, Pres participle VBN Verb, Past participle
VBP Verb, Present VBZ Verb, 3P Sing Pres WDT Wh-determiner
WP Wh-pronoun WP Possessive wh-pronoun WRB Wh-adverb

the sequence. Let yt ∈�, then Y =�+ is the set of arbitrary length sequences generated
from �. In POS tagging, xt denotes the tth word, yt denotes the grammatical type (POS tag)
of xt and � denotes the set of all grammatical types, for example as given in Table 9.1.

The goal is to learn a mapping f : X → Y where X and Y are observation and label
sequence spaces. Hence, our learning problem is a generalization of supervised classification
where values of the response variables (labels) are predicted not only with respect to the
observations but also with respect to values of other response variables. The approach
we pursue is to learn a discriminant function F : X × Y→# where F(x̄, ȳ) can be
interpreted as measuring the compatibility of x̄ and ȳ. Each discriminant function F induces
a mapping f ,

f (x̄; w)= arg max
ȳ∈Y

F(x̄, ȳ; w), (9.1)

where w denotes a parameter vector and ties are arbitrarily broken. We restrict the space of
F to linear functions over some feature representation φ, which is defined on the joint input–
output space. φ is chosen such that it models the sequential structure of ȳ and its dependency
on x̄. As in HMMs, we assume the model to be stationary. This results in the sharing of w
parameters across components in the sequence

F(x̄, ȳ; w)= 〈w, φ(x̄, ȳ)〉 =
∑
t

〈w, φ(x̄, ȳ; t)〉.

Given this definition of F , we need to define the features φ to complete the design of the
architecture. Our main design goal in defining φ is to make sure that f can be computed
from F efficiently, i.e. using a Viterbi-like decoding algorithm.

9.2.1 Feature Representation

We extract two types of features from an observation-label sequence pair (x̄, ȳ). The first
type of features captures inter-label dependencies

φ1
sσσ ′(x̄, ȳ; t)= �{ys=σ }�{yt=σ ′},
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where σ, σ ′ ∈� denote labels for single observations and �{·} denotes the indicator function.
Here, φ1

sσσ ′(x̄, ȳ; t) corresponds to a feature φ1
k (x̄, ȳ; t) where k is indexed by (s, σ, σ ′),

the label σ at position s and the label σ ′. These features simply indicate the statistics of how
often a particular combination of labels occurs at neighboring sites. We restrict the inter-label
dependencies to neighboring labels (e.g. s ∈ {t + 1, t + 2} for third order Markov features)
to achieve our design goal, i.e. to ensure the availability of an efficient dynamic programming
algorithm.

The second type of features captures the dependency between a label and the observation
sequence. Let ϕ be the set of observation attributes relevant for the particular application.
For example, in POS tagging, the information that a word ends with ‘-ing’ can be very
informative and therefore should be an attribute of the observation. We describe the attributes
for POS tagging problems in detail in Section 9.5.1. The observation-label dependency
features combine the attributes with individual labels, σ ∈�. These features indicate the
statistics of how often an attribute occurs with a particular label conjunctively:

φ2
srσ (x̄, ȳ; t)= �{yt=σ }ϕr(xs).

Again φ2
srσ (x̄, ȳ; t) corresponds to a feature φ2

k (x̄, ȳ; t) where k is indexed by (s, r, σ ), the
attribute r of the observation at position s and the label σ . For example, in POS tagging,
if ϕr(x) denotes whether the word x is ending with ‘-ing’, σ is ‘VBG’ (Verb, Present
participle) and s = t − 1, then the feature φ2

srσ (x̄, ȳ; t) denotes whether the t th label in the
label sequence ȳ is a ‘VBG’ and the previous word ((t − 1)th word) ends with ‘-ing’.

Since in the discriminative framework we condition on the observation sequence (as
opposed to generating it as in the generative framework), extracting features from arbitrarily
past or future observations does not increase the complexity of the model. For this reason,
there are no restrictions on the relationship of s and t for observation-label features. The
features for which s �= t are usually called overlapping features (or sliding window features),
since the same input attribute ϕk(xs) is encoded in the model multiple times within different
contexts. These features are used widely in discriminative sequence learning (Collins 2002;
Lafferty et al. 2001) and have been shown to improve classification accuracy in different
applications.

Finally, our feature map is the concatenation of the inter-label and observation-label
dependency features (where⊕ denotes concatenation),

φ(x̄, ȳ; t)= φ1(x̄, ȳ; t)⊕ φ2(x̄, ȳ; t).
Various generalizations of this feature representation are possible, such as extracting

different input features dependent on the relative distance |ts| in the chain. We use this
representation as a prototypical example. In Section 9.4, we investigate how to extend this
via kernel functions.

9.2.2 Empirical Risk Minimization

We investigate a supervised learning setting, where observation-label sequence pairs (x̄, ȳ)
are generated from a fixed but unknown distribution P over X × Y and the goal is to
find the discriminant function F such that the risk, i.e. the cost of making an incorrect
prediction, is minimized. Since P is unknown, we use a sample of input–output pairs
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S = {(x̄1, ȳ1), . . . , (x̄n, ȳn)}, that are assumed to be generated i.i.d. according to P and we
minimize the empirical risk with respect to S.

The standard zero-one risk typically used in classification is not appropriate for the
sequence labeling problem, since zero-one risk cannot capture the degrees of incorrect
prediction of sequences. In particular, in POS tagging the evaluation measure is the Hamming
distance, which measures the number of incorrect components of the predicted sequence. The
empirical Hamming risk is given by

Rhm(w; S)=
n∑
i=1

T∑
t=1

�{yit �=f (x̄i;w)t },

where f (x̄; w)t denotes the tth component of the predicted label sequence.
Another risk measure that can be used for label sequences is the rank function (Freund

1998; Schapire 1999), which measures the fraction of incorrect label sequences that are
ranked higher than the correct one. The empirical rank risk is given by

Rrk(w; S)=
n∑
i=1

∑
ȳ �=ȳi

�{F(x̄i,ȳ;w)≥F(x̄i,ȳi;w)}.

9.2.3 Conditional Random Fields and Sequence Perceptron

Due to the nonconvexity of the risk functions, it is common to optimize convex surrogate
functions that are upper bounds of the risk functions. Logarithmic, exponential and hinge
loss functions are the most common surrogate functions of the zero-one risk. Among these
functions, the logarithmic loss has been proposed for sequence labeling, where the goal is to
minimize the negative conditional log-likelihood of the data,

Rlog(w; S)=−
n∑
i=1

log p(ȳi |x̄i; w), where

p(ȳ|x̄; w)= eF(x̄,ȳ;w)∑
ȳ ′∈Y eF(x̄,ȳ

′;w) . (9.2)

This gives the optimization problem of the widely used CRFs (Lafferty et al. 2001). Rlog

is a convex function and is generally optimized using gradient methods. The gradient of
Rlog(w; S) is given by

∇wRlog =
∑
i

Eȳ∼p(.|x̄)
[∑

t

φ(x̄, ȳ; t)|x̄ = x̄i
]
−
∑
t

φ(x̄i , ȳi; t). (9.3)

The expectation of the feature functions can be computed using the Forward–Backward
algorithm. When it is not regularized, Rlog is prone to overfitting, especially with noisy data.
For this reason, it is common to regularize this objective function by adding a Gaussian prior
(a term proportional to the squared L2 norm of the parameter w) to avoid overfitting the
training data (Chen and Rosenfeld 1999; Johnson et al. 1999).

Another discriminative learning method for sequences is Hidden Markov Perceptron
(Collins 2002), which generalizes the Perceptron algorithm for sequence labeling.
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Initialize w= 0.
Repeat:

for all training patterns x̄i

compute ȳ ′ = arg maxȳ F (x̄i, ȳ; w)
if ȳi �= ȳ ′

w← w+ φ(x̄i , ȳi)− φ(x̄i , ȳ ′)
Until convergence or a maximum number of iterations reached.

Figure 9.1 Hidden Markov Perceptron algorithm.

This approach is outlined in Figure 9.1. Investigating the parameter update of Figure 9.1,
we can view Hidden Markov Perceptron as an online approximation for CRFs, where the
expectation term in Equation (9.3) is approximated with the contribution from the most
likely label. This approximation can be tight if the distribution p(ȳ|x̄) is peaked. Then, the
contribution of the most likely label can dominate the expectation values.

In this chapter, we focus on the exponential loss and the hinge loss as surrogate functions
of the empirical risk. This leads to the generalizations of two well-known large margin
methods, Boosting and SVMs, to label sequence learning problems. These methods, either
explicitly or implicitly, maximize the margin of the data, where the margin for an observation
sequence x̄ is defined as

γ (x̄, ȳ; w)= F(x̄, ȳ; w)−max
ȳ ′ �=ȳ

F (x̄, ȳ ′; w). (9.4)

This is a simple generalization of the multiclass separation margin (Crammer and Singer
2000) and it measures the differences of the compatibility scores of (x̄, ȳ) and (x̄, ȳ ′) where
ȳ ′ is the most competitive labeling of x̄ that is not ȳ. Intuitively, when this value is positive
for the correct labeling of an observation sequence x̄, the prediction function Equation (9.1)
makes a correct prediction for x̄. The goal of large margin classifiers is to maximize the
margin in all training instances in the sample, which in turn may lead to correct predictions
not only on the sample but also on unobserved observations.

9.3 Sequence Boosting

AdaBoost (Freund and Schapire 1995) is one of the most powerful learning ideas introduced
to the machine learning community in the last decade. We present a generalization of
AdaBoost to label sequence learning. This method, which we refer to as Sequence AdaBoost,
was first proposed in Altun et al. (2003a). It employs the advantages of large margin methods
as well as its implicit feature selection property. This aspect is quite important for efficient
inference in high dimensional feature spaces and for cascaded systems, for which speech
recognition is a canonical example. Sequence AdaBoost also makes use of the availability
of a dynamic programming (DP) algorithm for efficient learning and inference due to the
Markov chain dependency structure between labels.
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9.3.1 Objective Function

The key idea of Boosting is to obtain a high accuracy classifier by combining weak learners
that are trained on different distributions of the training examples. In Sequence AdaBoost,
we consider the feature functions φ defined in Section 9.2.1 as weak learners and learn their
combination coefficients w by training over the sample S with distributions D. D assigns a
weight to each training instance x̄i and its possible labelings ȳ ∈ YTi , where Ti is the length
of x̄i .

In particular, motivated by Schapire and Singer (1999), we propose optimizing the
exponential risk function on the sequential data weighted according to D,

Rexp(w; S)≡
n∑
i=1

∑
ȳ �=ȳi

D(i, ȳ)eF (x̄
i,ȳ;w)−F(x̄i,ȳi;w).

Intuitively, by minimizing this function, we increase the compatibility of the correct
observation-label sequence pairs, while decreasing the compatibility of all the other incorrect
pairs. Due to the exponential function, Rexp is dominated by the term(s) corresponding
to (xi, ȳ) with largest relative compatibility score for ȳ �= ȳi (maxȳ �=ȳi F (x̄i, ȳ; w)−
F(x̄i, ȳi; w)=−γ (x̄i, ȳi; w)). Hence, Rexp performs an implicit margin maximization
where the margin is defined in Equation (9.4). Moreover, it is easy to show that Rexp is a
convex surrogate of the rank risk Rrk.

Proposition 9.3.1 The exponential risk is an upper bound on the rank risk, Rrk ≤Rexp.

Proof. (i) If F(x̄i, ȳi; w) > F(x̄i, ȳ; w) then �{F(x̄i,ȳ;w)≥F(x̄i,ȳi;w)} = 0≤ ez for any z.

(ii) Otherwise, �{F(x̄i ,ȳ;w)≥F(x̄i,ȳi;w)} = 1= e0 ≤ eF(x̄i,ȳ;w)−F(x̄i,ȳi;w). Performing a
weighted sum over all instances and label sequences ȳ completes the proof. �

Interestingly, whenD is uniform for all ȳ of each training instance x̄i , this loss function is
simply the weighted inverse conditional probability of the correct label sequence as pointed
out by Lafferty et al. (2001),

Rexp(w; S)=
∑
i

[
1

p(ȳi |x̄i; w)
− 1

]
.

where p is defined in Equation (9.2). Introducing the distribution D allows the loss function
to focus on difficult training instances.

9.3.2 Optimization Method

Clearly, Rexp is a convex function and can be optimized using standard gradient based
methods. Instead, we present a Boosting algorithm that generalizes the AdaBoost.MR
algorithm for multiclass classification (Schapire and Singer 2000) to label sequence learning.
This is a sparse greedy approximate algorithm that optimizes an upper bound on Rexp with
sequential updates. In general, Sequence AdaBoost leads to a sparse feature representation
due to these sequential updates.

As standard AdaBoost.MR, Sequence AdaBoost forms a linear combination of weak
learners, an ensemble, by selecting the best performing weak learner and its optimal weight
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parameter to minimize Rexp at each round. It also maintains a weight distribution over
observation-label sequence pairs and updates this distribution after every round of Boosting
such that training instances x̄i with small margin and their most competitive incorrect
labelings are weighted higher. This allows the weak learners in the next round to focus on
instances that are difficult to predict correctly.

(a) Weight Distribution of Examples

We define a sequence of distributions (D1, . . . , Dr , . . . , DR) where Dr denotes the
distribution over (x̄i , ȳ) pairs in the rth round of Boosting and R is the total number of
rounds. Dr(i, ȳ) is given by the recursive formula of Dr−1, the feature selected in the rth
round (denoted by φk(r)) and its optimal weight update (denoted by %wk(r))

Dr+1(i, ȳ)≡ Dr(i, ȳ)

Zr
e%wk(r)(

∑
t φk(r)(x̄

i ,ȳ;t )−φk(r)(x̄i,ȳi;t )), (9.5)

where Zr is the normalization constant. We set D0(i, ȳ) to be uniform over all ȳ �= ȳi and
D0(i, ȳ

i)= 0 for all i. We denote wr as the sum of all weight updates from round 1 to r . One
can relate Rexp to the weight distribution.

Proposition 9.3.2 Rexp is the product of the normalization constants, Rexp(wR; S)=∏R
r=1 Zr .

Proof. It can be shown that Dr(i, ȳ)= exp[F(x̄i, ȳ; wr )− F(x̄i, ȳi; wr )]/Zr . Then,
we see that Rexp(wR; S)= ZR . The recursive definition of the distribution Equation (9.5)
reveals that ZR =∏

r Zr . �
It can be shown that Dr(i, ȳ) can be decomposed into a relative weight for each training

instance, Dr(i), and a relative weight of each sequence, πri(ȳ), where

Dr(i, ȳ)=Dr(i)πri(ȳ),

Dr(i)≡ [p(ȳi |x̄i; wr )−1 − 1]∑
j [p(ȳj |x̄j ; wr )−1 − 1] , ∀i and

πri(ȳ)≡ p(ȳ|x̄i; wr )
1− p(ȳi |x̄i; wr )

, ∀ȳ �= ȳi .

The relative weight of each training instance Dr(i) enforces the optimization problem to
focus on difficult instances x̄i in the sense that the probability of the correct labeling
p(ȳi |x̄i; wr ) is low with respect to the current parameter values wr . Dr(i)→ 0 as we
approach the perfect prediction case of p(ȳi |x̄i; wr )→ 1. The relative weight of each
sequence πri(ȳ) is simply the re-normalized conditional probability p(ȳ|x̄i; wr ). For a given
x̄i , it enforces the optimization problem to focus on the most competitive labelings with
respect to wr .

(b) Selecting Optimal Feature and its Weight Update

Proposition 9.3.2 motivates a Boosting algorithm which minimizes Zr with respect to a
weak learner φr(k) and its optimal weight update %wr(k) at each round. In order to simplify
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Initialize D0(i, ȳ)= 1∑
j (|YTj | − 1)

for ȳ �= ȳi , D0(i, ȳ
i)= 0.

Initialize w= 0.
Loop: for r = 1, . . . , R

Perform Forward–Backward algorithm over S to compute sk, ∀k via Equation (9.8).
Select φk that minimizes the upper bound in Equation (9.7).
Compute optimal increment%wk using Equation (9.9).
Update Dr+1 using Equation (9.5).

Figure 9.2 Sequence AdaBoost.

the notation, we define uk(x̄i, ȳ)≡∑
t φk(x̄

i , ȳ; t)− φk(x̄i, ȳi; t). Moreover, we drop the
round index r focusing on one round of Boosting. Given these definitions, we can rewrite
Z as

Z(%w)≡
∑
i

D(i)
∑
ȳ �=ȳi

πi (ȳ) exp[%w u(x̄i, ȳ)]. (9.6)

Minimizing Z exactly on large datasets and/or a large number of features is not tractable,
since this requires programming run with accumulators (Lafferty et al. 2001) for every
feature. To overcome this problem, we propose minimizing an upper bound on Z that is
linear in φ. Defining Uk and Lk as the maximum and minimum values of uk for all x̄i and all
ȳ, one can write an upper bound of Z as

Z(%w) ≤ se%wL + (1− s)e%wU , where (9.7)

s ≡
∑
i

D(i)
∑
ȳ �=ȳi

πi (ȳ)
U − u(x̄i, ȳ)
U − L . (9.8)

We refer the interested reader to Altun et al. (2003a) for the derivation of this bound.
Note that 0≤ s ≤ 1 and it is large when

∑
t φk(x̄

i , ȳi; t) >∑
t φk(x̄

i, ȳ; t). Then s can be
interpreted as a measure of correlation of φ and the correct label sequences with respect to
the distributionD(i, ȳ). We call s the pseudo-accuracy of feature φ.

The advantage of Equation (9.7) over Z is that one can compute s for all features
simultaneously by running the Forward–Backward algorithm once, since s is simply an
expectation of the sufficient statistics. The optimal weight update %w that minimizes
Equation (9.7) is given by

%w = 1

U − L log

( −Ls
U(1− s)

)
. (9.9)

Figure 9.2 describes the iterative procedure of Sequence AdaBoost. In each iteration, the
Forward–Backward algorithm is performed over the training data. This provides sk values of
all features. The optimal updates are computed with respect to Equation (9.9). These values
are plugged into Equation (9.7) to find the feature with minimum Z(%w). This feature is
added to the ensemble and the distribution is updated according to Equation (9.5).
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Figure 9.3 An example of the tight and loose bounds on the normalization constant Z.

(c) A Tighter Approximation

In sequence learning, Uk and −Lk can be as large as the maximum length of the training
sequences if the feature φk occurs frequently. Then, the bound in Equation (9.7) can be very
loose, especially when there exists a very long sequence in the training set. The bound can
be refined with piece-wise linear functions defined with respect to each training instance.
Defining Uik and Lik as the maximum and minimum values of uk for all ȳ for a fixed
observation sequence x̄i , we give a tighter bound on Z as

Z(%w) ≤
∑
i

D(i)(sie%wLi + (1− si )e%wUi ), where (9.10)

si ≡
∑
ȳ �=ȳi

πi(ȳ)
Ui − u(x̄i, ȳ)
Ui − Li . (9.11)

Figure 9.3 illustrates the difference between the two bounds on an example of four
observation-label sequence pairs of equal length. The line labeled ‘LB’ is the loose
bound given by Equation (9.7). The gap between Z Equation (9.6) and the loose bound
Equation (9.7) is four times the area between LB and the exponential function (solid line).
The gap between Z and the tight bound Equation (9.10) is the sum of the area between each
line S∗ and the exponential curve, which is much smaller than the gap of the loose bound.

Unfortunately, there is no analytical solution of %w that minimizes Equation (9.10).
However, since it is convex in %w, it can be minimized with a simple line search. The
algorithm optimizing this tighter bound is given by changing lines 4, 5 and 6 in Figure 9.2
accordingly.



LARGE MARGIN METHODS FOR PART-OF-SPEECH TAGGING 149

(d) Algorithmic Details

Both of the upper bounds may lead to conservative estimates of the optimal step sizes.
One might use more elaborate techniques to find the optimal %wk(r), once φk(r) has been
selected. For example, Zr can be optimized exactly for the feature φk(r) that minimizes the
upper bound on Zr . This involves performing a dynamic program with accumulators on the
sequences in which φk(r) can be observed.

As observed in Collins (2000), the computation can be reduced drastically by taking
sparsity into account. To achieve this, we perform some bookkeeping before Sequence
AdaBoost. In particular, for each training instance x̄i we keep a list of features that can be
observed in (x̄i , ȳ) pairs for any ȳ. Moreover, for each feature φk we keep a list of the training
sequences x̄i in which φk can be observed. During Boosting, we store the pseudo-accuracy
sk of all features. Then, at each round we only need to update sk of features φk that may
co-occur with φk(r−1). This can be achieved efficiently by restricting the dynamic program to
only the training instances in which φk(r−1) can be observed using the lists described above.

9.4 Hidden Markov Support Vector Machines

In this section, we present the second large margin method for sequence which is a
generalization of SVMs to label sequence learning first presented in Altun et al. (2003b). This
method is named Hidden Markov Support Vector Machines (HM-SVMs), since it combines
the advantages of HMMs and SVMs. It is a discriminative sequence learning method with
the power of maximum (soft) margin criteria and the strength of learning with nonlinear
feature mappings defined jointly on the observation-label space by using kernel functions,
two genuine properties of SVMs. It also inherits DP techniques from HMMs to exploit the
sequence structure of labels.

9.4.1 Objective Function

In HM-SVMs, we define an optimization problem that uses the margin γ where the margin
is defined in Equation (9.4). Note that γ (x̄, ȳ; w) > 0 implies that the correct label sequence
receives the highest score. In the maximum margin setting, the goal is to find a hyperplane
that not only assigns maximum score to the correct label sequence of each observation
sequence, but also separates them with some margin, which is measured by γ . Then, we
propose maximizing the minimum of the margins,

w∗ = arg max
w

min
i
γ (x̄i , ȳi; w). (9.12)

As in standard SVMs, the margin can be made arbitrarily large by scaling w, if a minimal
margin of γ > 0 can be achieved. We overcome this multiple solution problem by fixing
the margin to be equal to 1 and minimizing the squared norm of w, ‖w‖2 subject to the
margin constraints. In order to allow margin violations for non-separable cases, we add slack
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variables ξ(i) for every training sequence:

SVM1 :min
w,ξ

1

2
‖w‖2 + C

n∑
i=1

ξ(i), s.t. ξ(i)≥ 0, ∀i

F (x̄i, ȳi; w)− F(x̄i, ȳ; w) ≥ 1− ξ(i), ∀i, ȳ �= ȳi,

where the optimal solution of the slack variables can be found with respect to the w
parameters, ξ(i; w)=max{0, 1− γ (x̄i, ȳi; w)}.

Proposition 9.4.1 The hinge risk Rsvm(w)= (1/n)∑n
i=1 ξ(i; w) is an upper bound on 0-1

risk.

Proof. (i) If ξ(i; w) < 1, then one gets F(x̄i, ȳi; w)−maxȳ �=ȳi F (x̄i, ȳ; w)= γ (x̄i, ȳi)
> 0, which means the data point is correctly classified and �{f (x̄i;w) �=ȳi} = 0≤ ξ(i; w).
(ii) If ξ(i; w)≥ 1, then the bound holds automatically, since �{f (x̄i;w) �=ȳi} ≤ 1≤ ξ(i; w).
Summing over all i completes the proof. �

One can generalize SVM1 by imposing the margin to be more than some cost function,
such as Hamming distance (Taskar et al. 2003; Tsochantaridis et al. 2005). Then, the margin
constraints in SVM1 are stated as

F(x̄i, ȳi; w)− F(x̄i, ȳ; w)≥%(ȳ, ȳi)− ξ(i), ∀i, ȳ �= ȳi , (9.13)

where % denotes the Hamming distance. By incorporating the cost function into the
optimization problem, one can hope to achieve better performance than optimizing a
surrogate function of the risk. This formulation provides an upper bound on the Hamming
loss.

Proposition 9.4.2 The risk Rhs(w)= (1/n)∑n
i=1 ξ

hm(i;w) is an upper bound on Rhm,
where ξhm is the optimal solution of SVM1 with Equation (9.13) constraints.

Proof. ξhm(i;w)=max{0,%(ȳ, ȳi)− γ (x̄i, ȳi; w)} is guaranteed to upper bound
%(ȳ, ȳi) for ȳ such that γ (x̄i, ȳi; w)≤ 0. Summing over all i completes the proof. �

As an alternative to SVM1, one can introduce one slack variable for every training instance
and every sequence ȳ leading to a similar QP with slack variables ξ(i, ȳ; w)=max{0, 1−
[F(x̄i, ȳi; w)− F(x̄i, ȳ; w)]}. This provides an upper bound on the rank loss, Rrk.

Proposition 9.4.3 (1/n)
∑n
i=1

∑
ȳ �=ȳi ξ(i, ȳ; w)≥Rrk(w, w).

Proof. (i) If ξ(i, ȳ; w) < 1, then F(x̄i, ȳi; w) > F(x̄i, ȳ; w), which implies that ȳ is
ranked lower than ȳi , in which case ξ(i, ȳ; w)≥ 0 establishes the bound.
(ii) If ξ(i, ȳ; w) ≥ 1, then the bound holds trivially, since the contribution of every pair (x̄i , ȳ)
to Rrk can be at most 1. �
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9.4.2 Optimization Method

In this chapter, we focus on SVM1, as we expect the number of active inequalities in SVM1
to be much smaller compared with the latter formulation since SVM1 only penalizes the
largest margin violation for each example. The dual QP of SVM1 is given by solving the
Lagrangian with respect to the Lagrange multipliers α(i,ȳ) for every margin inequality.

DSVM1 : maxα
1

2

∑
i,ȳ �=ȳi

α(i,ȳ) (9.14a)

− 1

2

∑
i,ȳ �=ȳi

∑
j,ȳ ′ �=ȳj

α(i,ȳ)α(j,ȳ ′)〈δφ(i, ȳ), δφ(j, ȳ ′)〉

s.t. α(i,ȳ) ≥ 0,
∑
ȳ �=ȳi

α(i,ȳ) ≤ C, ∀i, ȳ, (9.14b)

where δφ(i, ȳ)= φ(i, ȳi)− φ(i, ȳ). Note that the optimality equation of w is given by

w∗ =
∑
j

∑
ȳ

α(j,ȳ)δφ(j, ȳ).

Then, both the optimization problem DSVM1 and the discriminative function F(x̄, ȳ) are
computed with respect to inner products of two observation-label sequence pairs. As a simple
consequence of the linearity of the inner products, one can replace this with some kernel
functions. The only restriction on the types of kernel function to consider here is to compute
the arg max operator in the prediction function Equation (9.1) efficiently. We discuss this

issue later in Section 9.4.3
DSVM1 is a quadratic program parameterized with Lagrange parameters α, whose

number scales exponentially with the length of the sequences. However, we expect that only
a very small fraction of these parameters (corresponding to support sequences) will be active
at the solution for two reasons. First, the hinge loss leads to sparse solutions as in standard
SVMs. Second, and more importantly, many of the parameters are closely related because of
the sequence structure, i.e. large amount of overlap of the information represented by each
parameter.

The interactions between these parameters are limited to parameters of the same training
instances, thus the parameters of the observation sequence x̄i , α(i,.) are independent of the
parameters of other observation sequences, α(j,.). Our optimization method exploits this
dependency structure of the parameters and the anticipated sparseness of the solution to
achieve computational efficiency.

9.4.3 Algorithm

We propose using a row selection procedure to incrementally add inequalities to the
problem. We maintain an active set of label sequences, Si , for every instance, which are
initially {ȳi}, the correct label sequences. We call these sets working sets and define the
optimization problem only in terms of the Lagrange parameters corresponding to the working
set of a particular observation sequence. We incrementally update the working sets by
adding Lagrange parameter(s) (corresponding to observation-label sequence pair(s)) to the
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Initialize Si← {ȳi}, α(i,.) = 0, ∀i
Repeat:

for i = 1, . . . , n
Compute ȳ ′ = arg maxȳ �=ȳi F (x̄i, ȳ; α)
if F(x̄i, ȳi; α)− F(x̄i, ȳ ′; α) < 1− ξi

Si← Si ∪ {ȳ ′}
Optimize DSVM1 over α(i,ȳ), ∀ȳ ∈ Si

Remove ȳ ∈ Si with α(i,ȳ) < ε
Until: no margin constraint is violated

Figure 9.4 Row selection optimization for HM-SVM.

optimization problem. This is done by iterating over training sequences and finding the label
sequence ȳ that achieves a best score with respect to the current classifier F other than the
correct one. Such a sequence is found by performing a two-best Viterbi decoding (Schwarz
and Chow 1990). The satisfaction of the margin constraint by this label sequence implies that
all the other label sequences satisfy their margin constraints as well. If ȳ violates the margin
constraint, we add it into the working set of x̄i and optimize the quadratic program with
respect to the Lagrange parameters in the working set of x̄i , while keeping the remaining
variables fixed. Thus, we add at most one negative pseudo-example to the working set at
each iteration. This procedure can be viewed as a version of a cyclic coordinate ascent. The
algorithm is described in Figure 9.4.

It is possible to show that this algorithm terminates in a polynomial number of steps
with respect to the length of sequences, if the constraints are satisfied up to some precision
(Tsochantaridis et al. 2005). Thus, even though there is an exponential number of constraints,
the optimal solution can be obtained by evaluating only a very small percentage of the total
constraints, only a polynomial number of constraints.

Algorithmic Details

One can replace the inner products of two observation-label sequence pairs in DSVM1 and in
the discriminative function F with a kernel function. Let us recall the feature representation
presented in Section 9.2.1:

φ(x̄, ȳ)=
∑
t

φ(x̄, ȳ; t)=
∑
t

φ1(x̄, ȳ; t)⊕ φ2(x̄, ȳ; t).

Then, the inner product can be written as

〈φ(x̄, ȳ), φ(x̄ ′, ȳ ′)〉 =
∑
s,t

�{ys−1=y ′t−1∧ys=y ′t } +
∑
s,t

�{ys=y ′t }k(xs, x
′
t ) (9.15)

where k(xs, x
′
t )= 〈ϕ(xs), ϕ(x ′t )〉. (9.16)

Hence the similarity between two sequences depends on the number of common two-label
fragments as well as the inner product between the feature representation of patterns with a
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common label. Here, one can replace the inner product on the input attributes with any kernel
function. Although one can represent the indicator functions of labels as inner products, it
is not beneficial to replace them with nonlinear kernels as this can introduce long range
dependencies across labels and therefore it may render the DP algorithm intractable.

Given this decomposition, it is easy to see that the discriminative function F also
decomposes into two terms, F(x̄, ȳ)= F1(x̄, ȳ)+ F2(x̄, ȳ), where

F1(x̄, ȳ)=
∑
σ,τ

δ(σ, τ )
∑
s

�{ys−1=σ∧ys=τ }, (9.17a)

δ(σ, τ )=
∑
i,ȳ ′

α(i,ȳ ′)
∑

t :yit−1 �=σ∨yit �=τ
�{y ′t−1=σ∧y ′t=τ } (9.17b)

and where

F2(x̄, ȳ)=
∑
s,σ

�{ys=σ }
∑
i,t

β(i, t, σ )k(xs, x
i
t ), (9.18a)

β(i, t, σ )=
0 if yit = σ∑

ȳ

�{yt=σ }α(i,ȳ) otherwise (9.18b)

Thus, we only need to keep track of the number of times an individual label pair (σ, τ ) was
predicted incorrectly and the number of times a particular observation xis was incorrectly
classified. This representation leads to an efficient computation as it is independent of the
number of incorrect sequences ȳ ′.

In order to perform the Viterbi decoding, we have to compute the transition cost matrix
and the observation cost matrix Hi for the ith sequence. The transition matrix is given by δ
and the observation matrix is given by

Hi
sσ =

∑
j

∑
t

β(j, t, σ )k(xis, x
j
t ) (9.19)

Given these two matrices, Viterbi decoding amounts to finding the values that maximize the
potential function at each position in the sequence.

9.5 Experiments

9.5.1 Data and Features for Part-of-Speech Tagging

We experimentally evaluated Sequence AdaBoost and HM-SVMs on POS tagging. We
used the Penn TreeBank corpus for the POS tagging experiments. This corpus consists of
approximately 7 million words of POS tagged Wall Street Journal articles. We used the stan-
dard experiment setup for Penn TreeBank: sections 2–21 training, section 24 development,
section 23 testing. The observation attributes are the standard features used in computational
linguistics, such as word identity, sentence initial, last (n)-letters of the word, contains
dot/hyphen/digit, etc. Overlapping features with respect to these attributes are extracted from
a window of size 3.
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Table 9.2 Accuracy of POS tagging on Penn TreeBank

POS Rlog Rexp Boost

S1 94.91 94.57 89.42
S2 95.68 95.25 94.91

9.5.2 Results of Sequence AdaBoost

We ran experiments comparing optimization of Rlog and Rexp using the BFGS (Broyden–
Fletcher–Goldferb–Shanno) method, a quasi-Newton convex optimization method (Press
et al. 1992). We also performed experiments with different formulations of Sequence
AdaBoost. Note that the BFGS method performs parallel updates, thus uses all the features
available to the model, whereas Sequence AdaBoost performs sequential updates leading to
sparse solutions. The number of Boosting rounds R is selected by cross-validation. We used
the tight bound Equation (9.10) to select the features and optimized Z exactly to find the
optimal weight update for the selected feature, unless stated otherwise.

We investigated the feature sparseness properties of Sequence AdaBoost by defining
incremental sets of features. The first set S1 consists of only HMM features, i.e. inter-
label dependency features (POS tag pairs) as well as word identity features (thus we do
not use the other attributes defined above in S1). S2 also includes features generated from
all attributes as well as the inter-label features. These results are summarized in Table 9.2.
Sequence AdaBoost performs substantially worse than the BFGS optimization of Rexp when
only HMM features are used, since there is not much information in the features other than
the identity of the word to be labeled. Consequently, Sequence AdaBoost needs to include
almost all weak learners in the ensemble and cannot exploit feature sparseness. When there
are more detailed features such as spelling features, the Boosting algorithm is competitive
with the BFGS method, but has the advantage of generating sparser models. For example,
in POS tagging, the feature ‘The current word ends with -ing and the current tag is VBG.’
replaces many word features. The BFGS method uses all of the available features, whereas
Boosting uses only about 10% of the features. Thus, the sparse nature of the problem is
necessary for the success of Sequence AdaBoost.

We investigated different methods of optimizing Z in Sequence AdaBoost, namely using
the loose and tight bounds, Equation (9.7) and Equation (9.10) respectively, and optimizing
Z exactly when the optimal feature is chosen with respect to the tighter bound. Even with
the tighter bound in the boosting formulation, the same features are selected many times,
because of the conservative estimate of the step size for parameter updates. We observed a
speeding up of the convergence of the boosting algorithm when Z is optimized exactly. In
order to evaluate this, we collected the features selected in the first 100 rounds and recorded
the number of times each feature is selected. We found that the tight bound substantially
improves the loose bound. For example, a feature selected 30 times in the first 100 rounds
of Boosting using the loose bound optimization is selected only five times by the tight
bound optimization. The features that are selected most frequently by the loose bound are
the features that are likely to be observed at any position in the sentence, which renders
Equation (9.7) very loose. Also, the step sizes achieved by the exact optimization are more
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Figure 9.5 Test error of POS task over a window of size 3 using five fold cross validation.

accurate than those of the loose bound. The same feature is selected only once with this
optimization (as opposed to five times with the tight bound optimization).

Overall, we observed that the performance of Sequence AdaBoost is comparable to CRFs.
The advantage of the Sequence AdaBoost over CRFs is its implicit feature selection property,
which results in very sparse models, using about 10% of the feature space. However, it is
important that the application naturally has a sparse representation. The tighter bound leads
to more accurate step sizes and therefore is preferable over the loose bound. The selection
between the exact optimization versus optimizing the tight bound is a tradeoff between the
number of Boosting iterations and the size of the training data. When the training data is not
very large, one may choose to optimize Z directly in order to reduce the Boosting iterations.

9.5.3 Results of Hidden Markov Support Vector Machines

We extracted a corpus consisting of 300 sentences from the Penn TreeBank corpus for the
POS tagging experiments. We compared the performance of HMMs and CRFs (optimizing
Rlog) with HM-SVM as well as an HM-Perceptron, according to their test errors in five fold
cross validation. We used second degree polynomial kernel for both the HM-Perceptron and
the HM-SVM. C in SVM1 is set to be 1. Although in a generative model like an HMM
overlapping features violate the model, we observed that HMMs using the overlapping
features described above outperformed the ordinary HMMs. For this reason, we only report
the results of HMMs with overlapping features. In Figure 9.5, ‘CRF’ refers to optimizing
Rlog, ‘CRF-B’ refers to optimizing regularized Rlog as described in Section 9.2.3, ‘HM-PC’
refers to HM-Perceptron.

Figure 9.5 summarizes the experimental results obtained on this task. The results demon-
strate the competitiveness of HM-SVMs. As expected, CRFs perform better than the HM-
Perceptron algorithm (HM-PC), since CRFs use the derivative of the log-loss function at
every step, whereas the Perceptron algorithm uses only an approximation of it. HM-SVMs
achieve the best results, which validates our approach of explicitly maximizing a soft margin
criterion.

In order to examine the nature of the extracted support sequences, we investigated a
subset of the support sequences ȳ. We observed that most of the support sequences differ
in only a few positions from the correct label sequence, resulting in sparse solutions, on
average 41 support sequences whereas the size of Y is exponential in the length of sentences.
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It should also be noted that there are no support sequences for many of the training examples,
i.e. αi(ȳi)= 0, since these examples already fulfill the margin constraints.

9.6 Discussion

In this chapter, we formulated the sequence labeling problem and outlined discriminative
learning methods for sequence labeling with a special focus on large margin approaches.

Sequence Boosting, a generalization of Boosting to label sequence learning, implicitly
minimizes the ensemble margin defined over sequences. Taking advantage of the convexity of
the exponential function, we defined an efficient algorithm that chooses the best weak learner
at each iteration by using the Forward–Backward algorithm. Its performance in accuracy is
competitive with the state-of-the-art sequence model of recent years, CRFs. As in standard
AdaBoost, Sequence Boosting induces sparse solutions and therefore is preferable over CRFs
or other sequence methods in situations where efficiency during inference is crucial. This is
of special importance in speech recognition.

HM-SVMs, a generalization of SVMs to label sequence learning problem, inherit the
maximum-margin principle and the kernel-centric approach of SVMs. We presented an
algorithm that makes use of the sparseness properties of hinge loss and the structure of
the parameters. Experimental results show that the algorithm outperforms CRFs in terms
of accuracy and is computationally feasible.

We used discriminative sequence labeling methods to predict POS tagging. POS tagging
is a particular class-based model used in the language model of speech recognizers. Training
these models for other class definitions is of interest. An interesting direction to pursue is
the use of these methods to train multiple class-based models jointly in order to improve the
accuracy of each of these models and to use them in combination for the language model of
speech recognition.
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A Proposal for a Kernel Based
Algorithm for Large Vocabulary
Continuous Speech Recognition

Joseph Keshet

We present a proposal for a kernel based model for a large vocabulary continuous speech
recognizer (LVCSR). Continuous speech recognition is described as a problem of finding
the best phoneme sequence and its best time span, where the phonemes are generated from
all permissible word sequences. A non-probabilistic score is assigned to every phoneme
sequence and time span sequence, according to a kernel based acoustic model and a kernel
based language model. The acoustic model is described in terms of segments, where each
segment corresponds to a whole phoneme, and it generalizes segment models for the non-
probabilistic setup. The language model is based on the discriminative language model
recently proposed by Roark et al. (2007). We devise a loss function based on the word
error rate and present a large margin training procedure for the kernel models, which aims at
minimizing this loss function. Finally, we discuss the practical issues of the implementation
of a kernel based continuous speech recognition model by presenting an efficient iterative
algorithm and considering the decoding process. We conclude the chapter with a brief
discussion on the model limitations and future work. This chapter does not report any
experimental results.

10.1 Introduction

Automatic speech recognition (ASR) is the process of converting a speech signal to
a sequence of words, by means of an algorithm implemented as a computer program.

Au tomatic Speech and Speaker R ecognition: Large Margin and Ker n el Methods Edited by Joseph Keshet 
and Samy Bengio © 2009 John Wiley & Sons, Ltd. ISBN: 978-0-470-69683-5
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While ASR does work today, and it is commercially available, it is extremely sensitive to
noise, speaker and environmental variability. The current state-of-the-art automatic speech
recognizers are based on generative models that capture some temporal dependencies such
as Hidden Markov Models (HMMs). While HMMs have been immensely important in
the development of large-scale speech processing applications and in particular speech
recognition, their performance is far from that of a human listener. This chapter presents
a proposal for a different approach to speech recognition which is based not on the HMM but
on recent advances in large margin and kernel methods.

Despite their popularity, traditional HMM-based approaches have several known draw-
backs such as conditional independence of observations given the state sequence, duration
model that is implicitly given by a geometric distribution, and the restriction of using acoustic
features which are imposed by frame based processing (Ostendorf 1996). Other drawbacks
are the convergence of the training algorithm (expectation-maximization EM) to a local
maximum, a training objective which is not aimed at optimizing the evaluation objective (e.g.
word error rate) and the fact that the likelihood is dominated by the observation probabilities,
often leaving the transition probabilities unused (Ostendorf 1996; Young 1996). A detailed
discussion about the shortcomings of HMMs can be found in Chapter 1.

Since HMMs were presented for speech recognition in the 1970s, two major efforts have
been made to tackle their shortcomings. The first effort was proposed by Ostendorf and
her colleagues (Ostendorf 1996; Ostendorf et al. 1996) and was termed segment models. In
summary, segment models can be thought of as a higher dimensional version of HMMs,
where Markov states generate random sequences rather than a single random vector observa-
tion. The basic segment model includes an explicit segment-level duration distribution and a
family of length-dependent joint distributions, both addressing the conditional independence
assumption, the weak duration model and the feature extraction imposed by frame based
observations. Although segment models are beautiful a generalization of HMMs, they were
not found to be very effective for speech recognition in practice.

More recently, a second effort has been proposed toward discriminative training of
HMMs as an alternative to likelihood maximization (see Bahl et al. (1986); Fu and Juang
(2007); Juang et al. (1997); Povey (2003) and the many references therein). Discriminative
training of HMMs aims at both maximizing the probability of correct transcription given
an acoustic sequence, and minimizing the probability of incorrect transcription given an
acoustic sequence, thus bringing the training objective closer to the evaluation objective.
Generally speaking, discriminative training methods outperform the maximum likelihood
training of HMMs. Nevertheless, the basic underlying model is always generative, and
therefore all discriminative training of HMMs suffers from the same shortcomings as the
traditional HMMs.

The model proposed in this work tries to combine the segmental models and discriminative
training. Our proposed model generalizes segment models for the non-probabilistic setup and
hence addresses the same shortcomings of HMMs already addressed by the segment models.
In addition, it addresses the minimization of the word error rate and the convergence of the
training algorithm to a global minimum rather than to a local one. Moreover, our model is a
large margin model which has been found to be robust to noise and can be easily transformed
into a nonlinear model using Mercer kernels.

The remainder of the chapter is organized as follows. In Section 10.2 we review the
segment models and HMMs for continuous speech recognition. In Section 10.3, we introduce
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State sequence q̄

Phone sequence p̄

Word sequence v̄

Figure 10.1 The basic notation of a Hidden Markov Model-based speech recognizer.

the kernel based model for large vocabulary continuous speech recognition and show its
relationship to the segment models. Then, in Section 10.4 we present the large margin
approach for learning the model parameters as a quadratic optimization problem. The
implementation details of our method are presented in Section 10.5, where we give an
iterative algorithm to approximate the large margin approach, propose a feature function
set for the acoustic and language models and discuss the implementation of the decoder and
its complexity. We conclude the chapter in Section 10.6.

10.2 Segment Models and Hidden Markov Models

The problem of speech recognition involves finding a sequence of words, v̄ = (v1, . . . , vN),
given a sequence of d-dimensional acoustic feature vectors, x̄= (x1, x2, . . . , xT ), where
xt ∈ X , and X ⊂ R

d is the domain of the acoustic vectors. Each word vi ∈ V belongs to a
fixed and known vocabulary V . Typically, each feature vector covers a period of 10 ms and
there are approximately T = 300 acoustic vectors in a 10 word utterance. Our basic notation
is depicted in Figure 10.1.

In the segment model or the traditional HMM speech recognition systems, the problem of
speech recognition is formulated as a statistical inference problem of finding the sequence of
words v̄ that is most likely given the acoustic signal x̄ by the Maximum a Posteriori (MAP)
rule as follows:

v̄′ = arg max
v̄
P (v̄|x̄)= arg max

v̄

p(x̄|v̄)P (v̄)
p(x̄)

, (10.1)

where we used Bayes’ rule to decompose the posterior probability in Equation (10.1). The
term p(x̄|v̄) is the likelihood of observing the acoustic vector sequence x̄ given a specified
word sequence v̄ and it is known as the acoustic model. The term P(v̄) is the probability of
observing a word sequence v̄ and it is known as the language model. The term p(x̄) can be
disregarded, since it is constant under the max operation.
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The HMM decoding process starts with a postulated word sequence v̄. Each word vi
is converted into a sequence of phones p̄, where p̄ ∈ P� and P is the set of all phone
symbols. The conversion between a word to its corresponding phone sequence is done using
a pronunciation lexicon lex, where lex is a function from the vocabulary to the domain of the
phone sequences, lex : V→ P�. Recall that a whole utterance is a concatenation ofN words,
hence its phonetic transcription is the concatenation of the pronunciation of each word:

p̄ = (lex(v1), . . . , lex(vN)).

The phone sequence is then converted to a state sequence, q̄ ∈Q�, where Q is the set
of all HMM states. Usually every phone is represented as a sequence of three to five
HMM states connected right-to-left with or without jump connections. The probability of
the postulated sequence p(x̄|p̄) is computed by concatenating the models of the contextual
phones composing the sequence. That is,

p(x̄|p̄)=
∑
q̄

p(x̄, q̄|p̄)=
∑
q̄

p(x̄|q̄, p̄) · P(q̄|p̄) (10.2)

=
∑
q̄

T∏
t=1

p(xt |qt ) · �{q̄,p̄}
T∏
t=1

P(qt |qt−1), (10.3)

where �{q̄,p̄} is an indicator function that equals 1 if the state sequence q̄ is permissible by
the phone sequence p̄ and zero otherwise. The Viterbi procedure in HMMs involves finding
the most likely state sequence,

q̄ ′ = arg max
q̄
p(x̄|q̄)P (q̄)

In the segment model (Ostendorf 1996; Ostendorf et al. 1996) each phone pl in p̄ is
modeled as a segment, including several frames. Let s̄ be the timing (alignment) sequence
corresponding to a phone sequence p̄. Each sl ∈N is the start-time of phonepl in frame units,
that is, sl is the start-time of segment l. The probability of the postulated sequence p(x̄|p̄)
using the segment model is computed as follows:

p(x̄|p̄)=
∑
s̄

p(x̄, s̄|p̄)=
∑
s̄

p(x̄|s̄, p̄) · P(s̄|p̄) (10.4)

=
∑
s̄

L∏
l=1

p(x̄sl+1−1
sl |sl, pl) ·

L∏
l=1

P(sl |sl−1, pl, pl−1), (10.5)

where x̄sl+1−1
sl = (xsl , . . . , xsl+1−1) is the sub-sequence of feature vectors constituting the

segment, and L is the number of phones (segments), L= |p̄|. Segment-based recognition
involves finding

p̄′ = arg max
p̄,L

[
max
s̄
p(x̄|s̄, p̄)P (s̄|p̄)P (p̄)

]
. (10.6)

The kernel based model is closely related to the segment model and can be considered as
a generalization of it. In the next section we present the kernel based model and show that it
generalizes the segment model.
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10.3 Kernel Based Model

Recall that the problem of speech recognition can be stated as being the problem of finding
the most likely sequence of words v̄′ given the acoustic feature vectors x̄. In its logarithmic
form it can be written as

v̄′ = arg max
v̄

log p(x̄|v̄)+ log P(v̄),

where p(x̄|v̄) is the probability of the acoustic features given the word sequence known as the
acoustic model, and P(v̄) is the probability of the sequence of words known as the language
model.

The discriminative kernel based construction for speech recognition is based on a
predefined vector feature function φ : X � × V�→H, where H is a reproducing kernel
Hilbert space (RKHS). Thus, the input of this function is an acoustic representation, x̄,
together with a candidate word sequence v̄. The feature function returns a vector in H,
where, intuitively, each element of the vector represents the confidence that the suggested
word sequence v̄ is said in the speech signal x̄.

The discriminative kernel based speech recognizer is not formulated with probabilities,
but rather as a dot product of the vector feature function φ and a weight vector w ∈H,

v̄′ = arg max
v̄

w · φ(x̄, v̄),

where w ∈H is a weight vector that should be learned. In the same spirit of generative HMM-
based speech recognizer, this function can be written as a sum of the acoustic model and the
language model:

v̄′ = arg max
v̄

wacoustic · φacoustic(x̄, v̄)+ wlanguage · φlanguage(v̄), (10.7)

where both wacoustic and wlanguage are sub-vectors of the vector w, i.e. w= (wacoustic,

wlanguage), and similarly φ(x̄, v̄)= (φacoustic(x̄, v̄), φlanguage(v̄)). The first term wacoustic ·
φacoustic(x̄, v̄) in the equation is the acoustic model, and it assigns a confidence for every
candidate word sequence v̄ and a given acoustic signal x̄. Since we do not know how to state
the feature functions of the acoustic modeling in terms of word sequences explicitly, we state
them in terms of the phoneme1 sequences and phoneme timing sequences. We define the
timing (alignment) sequence s̄ corresponding to a phoneme sequence p̄ as the sequence of
start times, where we denote by sl ∈ N the start time of phoneme pl ∈ P . Since we do not
know the start time sequence while decoding, we search for the best timing sequence, hence

v̄′ = arg max
v̄,p̄=lex(v̄)

[
max
s̄

wacoustic · φacoustic(x̄, p̄, s̄)+ wlanguage · φlanguage(v̄)
]
, (10.8)

where we use a lexicon lex mapping to generate phonemes from words, p̄ = (lex(v1), . . . ,

lex(vN)), and we overload the definition of the acoustic modeling feature function as φ :
X � × P� ×N

�→H. The description of the concrete form of the feature function is deferred
to Section 10.5.2.

1Note that in the kernel based model we use phonemes rather than phones.



164 AUTOMATIC SPEECH AND SPEAKER RECOGNITION

The second term wlanguage · φlanguage(v̄) in Equation (10.7) is the language model. Tra-
ditionally, the language model assigns a probability to a sequence of words by means of a
probability distribution. In the discriminative setting, the language model gives confidence
to a string of words in a natural language. Chapter 8 described discriminative language
modeling for a large vocabulary speech recognition task which would be suitable for the
above setting. Another way to build a discriminative language model is by using prediction
suffix trees (PSTs) (Dekel et al. 2004; Ron et al. 1996) as demonstrated in Pereira et al.
(1995).

Comparing the logarithmic form of the segment model Equation (10.6) with the kernel
based model Equation (10.8), it can be seen that the kernel based model generalizes the
segment model. Specifically, we can decompose the weight vector wacoustic into two sub-
vectors, wacoustic = (wacoustic

1 ,wacoustic
2 ), and similarly decompose the vector feature function

as φacoustic(x̄, p̄, s̄)= (φacoustic
1 (x̄, p̄, s̄), φacoustic

2 (p̄, s̄)). We get

v̄′ = arg max
v̄,p̄=lex(v̄)

[
max
s̄

wacoustic
1 · φacoustic(x̄, p̄, s̄)+ wacoustic

2 · φacoustic(p̄, s̄)

+ wlanguage · φlanguage(v̄)
]
. (10.9)

Setting each element of the vector φ to be an indicator function for every probability event
in the segment model and each element in w to be the log of the probability estimation of the
corresponding indicator in φ, we get the segment model.

There are several advantages of the kernel based model over the segment model. First
as we show in Section 10.5.1 the kernel based model estimated the weight vector as having
a small word error rate, and the process is guaranteed to converge to a global minimum.
Moreover, we can prove that this estimation of the weight vector leads to a word error rate on
unseen speech utterance (and not only on the training set). Last, the kernel based model can
be easily transformed into a nonlinear model. As we see in the next sections the algorithm for
estimating w solely depends on the dot product between feature functions φ. Wherever such
a dot product is used, it is replaced with the kernel function, which expresses a nonlinear dot
product operation.

10.4 Large Margin Training

The ultimate goal in speech recognition is usually to minimize the word error rate, that is,
the Levenshtein distance (edit distance) between the predicted sequence of words and the
correct one. In this section we present an algorithm for learning the weight vector w, which
aims at minimizing the word error rate. Throughout this chapter we denote by γ (v̄, v̄′) the
Levenshtein distance between the predicted word sequence v̄′ and the true word sequence v̄.

We now describe a large margin approach for learning the weight vectors wacoustic

and wlanguage which defines the continuous speech recognizer in Equation (10.8), from a
training set T of examples. Each example in the training set T is composed of a speech
utterance x̄ and its corresponding word sequence v̄. Overall we have m examples, that is,
T = {(x̄1, v̄1), . . . , (x̄m, v̄m)}. We assume that we have a pronunciation lexicon lex which
maps every word to a phoneme sequence. We also assume that given a speech utterance x̄
and its corresponding phonetic transcription p̄, we have access to the correct time alignment
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sequence s̄ between them. This assumption is actually not restrictive since such an alignment
can be inferred relying on a forced alignment algorithm described in Chapter 4.

Recall that we would like to train the acoustic model and the language model discrim-
inatively so as to minimize the Levenshtein distance between the predicted word sequence
and the correct one. Similar to the Support Vector Machine (SVM) algorithm for binary
classification (Cortes and Vapnik 1995; Vapnik 1998), our approach for choosing the weight
vector wacoustic and wlanguage is based on the idea of large-margin separation. Theoretically,
our approach can be described as a two-step procedure: first, we construct the feature
functions φacoustic(x̄i , p̄i , s̄i ) and φlanguage(v̄i ) based on each instance (x̄i , v̄i , p̄i , s̄i ), its
phonetic transcription p̄i and its timing sequence s̄i . We also construct the feature functions
φacoustic(x̄i , p̄, s̄) and φlanguage(v̄) based on x̄i and every possible word sequence v̄, where p̄
is the phoneme transcription corresponding to the word sequence v̄. Second, we find the
weight vectors wacoustic and wlanguage, such that the projection of feature functions onto
wacoustic and wlanguage ranks the feature functions constructed for the correct word sequence
above the feature functions constructed for any other word sequence. Ideally, we would like
the following constraint to hold:

wacoustic · φacoustic(x̄i , p̄i , s̄i )+ wlanguage · φlanguage(v̄i )

−max
s̄

wacoustic · φacoustic(x̄i , p̄, s̄)− wlanguage · φlanguage(v̄)

≥ γ (v̄i, v̄) ∀v̄ �= v̄i , p̄i = lex(v̄i ). (10.10)

That is, w= (wacoustic,wlanguage) should rank the correct word sequence above any other
word sequence by at least the Levenshtein distance between them. We refer to the difference
on the left-hand side of Equation (10.10) as the margin of w with respect to the best
alignment. Note that if the prediction of w is incorrect then the margin is negative. Naturally,
if there exists w satisfying all the constraints in Equation (10.10), the margin requirements are
also satisfied by multiplying w by a large scalar. The SVM algorithm solves this problem by
selecting the weights w minimizing 1

2‖w‖2 = 1
2‖wacoustic‖2 + 1

2‖wlanguage‖2 subject to the
constraints given in Equation (10.10), as it can be shown that the solution with the smallest
norm is likely to achieve better generalization (Vapnik 1998).

In practice, it might be the case that the constraints given in Equation (10.10) cannot be
satisfied. To overcome this obstacle, we follow the soft SVM approach (Cortes and Vapnik
1995; Vapnik 1998) and define the following hinge loss function:

�(w; (x̄i , v̄i , p̄i , s̄i ))
= max
v̄,p̄=lex(v̄)

[
γ (v̄i , v̄)− wacoustic · φacoustic(x̄i , p̄i , s̄i )− wlanguage · φlanguage(v̄i)

+max
s̄

wacoustic · φacoustic(x̄i , p̄, s̄)+ wlanguage · φlanguage(v̄)
]
+, (10.11)

where [a]+ =max{0, a}. The hinge loss measures the maximal violation for any of the
constraints given in Equation (10.10). The soft SVM approach for our problem is to choose
the vector w which minimizes the following optimization problem:

min
w

1

2
‖wacoustic‖2 + 1

2
‖wlanguage‖2 + C

m∑
i=1

�(w; (x̄i, v̄i , p̄i , s̄i )), (10.12)
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where the parameter C serves as a complexity–accuracy trade-off parameter: a low value of
C favors a simple model, while a large value of C favors a model which solves all training
constraints (see Cristianini and Shawe-Taylor (2000)).

10.5 Implementation Details

In this section we describe the implementation details of the proposed system. Solving the
optimization problem given in Equation (10.12) is expensive since it involves a maximization
for each training example. Most of the solvers for this problem, like sequential minimal opti-
mization (SMO) (Platt 1998), iterate over the whole dataset several times until convergence.
In the next section, we propose a slightly different method, which visits each example only
once and is based on our previous work (Crammer et al. 2006). This algorithm is a variant of
the algorithm presented in Chapter 4, in Chapter 5 and in Chapter 11.

10.5.1 Iterative Algorithm

We now describe a simple iterative algorithm for learning the weight vectors wacoustic

and wlanguage. The algorithm receives as input a training set T = {(x̄1, v̄1, p̄1, s̄1), . . . ,

(x̄m, v̄m, p̄m, s̄m)} of examples. Each example is constituted of a spoken acoustic signal x̄i ,
its corresponding word sequence v̄i , phoneme sequence p̄i and alignment sequence s̄i . At
each iteration the algorithm updates wacoustic and wlanguage according to the ith example in T
as we now describe. Denote by wacoustic

i−1 and wlanguage
i−1 the value of the weight vectors before

the ith iteration. Let v̄′i , p̄′i and s̄′i be the predicted word sequence, phoneme sequence and

timing sequence for the ith example, respectively, according to wacoustic
i−1 and wlanguage

i−1 ,

(v̄′i , s̄′i )= arg max
v̄,p̄=lex(v̄)

[
max
s̄

wacoustic
i−1 · φacoustic(x̄i , p̄, s̄)+ wlanguage

i−1 · φlanguage(v̄)
]
.

(10.13)
Denote by γ (v̄i , v̄′i ) the Levenshtein distance between the correct word sequence v̄i and the

predicted word sequence v̄′i . Also denote by �φi = (�φacoustic
i , �φ

language
i ) the difference

between the feature function of the correct word sequence minus the feature function of the
predicted word sequence as

�φacoustic
i = φacoustic(x̄i , p̄i , s̄i)− φacoustic(x̄i , p̄′, s̄′),

and
�φ

language
i = φlanguage(v̄i )− φlanguage(v̄′).

We set the next weight vectors wacoustic
i and wlanguage

i to be the minimizer of the following
optimization problem:

min
w∈H,ξ≥0

1
2‖wacoustic − wacoustic

i−1 ‖2 + 1
2‖wlanguage − wlanguage

i−1 ‖2 + Cξ (10.14)

s.t. wacoustic ·�φacoustic
i + wlanguage ·�φlanguage

i ≥ γ (v̄i, v̄′i )− ξ,
where C serves as a complexity–accuracy trade-off parameter (see Crammer et al. (2006))
and ξ is a non-negative slack variable, which indicates the loss of the ith example. Intuitively,
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we would like to minimize the loss of the current example, i.e. the slack variable ξ , while
keeping the weight vector w as close as possible to the previous weight vector wi−1. The
constraint makes the projection of the feature functions of the correct word sequence onto
w higher than the projection of the feature functions of any other word sequence onto w by
at least γ (v̄i , v̄′i ). It can be shown (see Crammer et al. (2006)) that the solution to the above
optimization problem is

wacoustic
i = wacoustic

i−1 + αi�φacoustic
i (10.15)

wlanguage
i = wlanguage

i−1 + αi�φlanguage
i .

The value of the scalar αi is based on the difference �φi , the previous weight vector wi−1
and a parameter C. Formally

αi =min

{
C,
[γ (v̄i , v̄′i )− wacoustic

i−1 ·�φacoustic
i − wlanguage

i−1 ·�φlanguage
i ]

‖�φacoustic
i ‖2 + ‖�φlanguage

i ‖2

}
. (10.16)

A pseudo-code of our algorithm is given in Figure 10.2.
We note in passing that the current state-of-the-art language models are trained on datasets

which are many orders of magnitude bigger than those used for acoustic models. Hence, if
we use the proposed approach to train the acoustic and language models jointly we will used
a small dataset and hence may not get state-of-the-art results. A possible solution to this
problem would be to train a discriminative language model on a big corpus, and use it as
the initial condition of the iterative algorithm. The iterative algorithm will train the acoustic
model and will refine the language model on a smaller corpus. We denote by wacoustic

0 and

wlanguage
0 the initial acoustic and language models, respectively. As discussed here, wacoustic

0 =
0 and wlanguage

0 is the pre-trained language model.
Last we would like to note that under some mild technical conditions, it can be shown

that the cumulative word error rate of an iterative procedure ,
∑m
i=1 γ (v̄i, v̄

′
i ), is likely to be

small. Moreover, it can be shown (Cesa-Bianchi et al. 2004) that if the cumulative word error
rate of the iterative procedure is small, there exists among the vectors {w1, . . . , wm} at least
one weight vector which attains small averaged word error rate on unseen examples as well.
The analysis follows the same lines as the analysis of the phoneme recognition algorithm
presented in Chapter 5.

10.5.2 Recognition Feature Functions

Our construction is based on a set of acoustic modeling feature functions, {φacoustic
j }nj=1,

which maps an acoustic–phonetic representation of a speech utterance as well as a suggested
timing sequence into a vector-space. For this task we can utilize the same set of features suc-
cessfully used in the task of forced alignment (Chapter 4) and keyword spotting (Chapter 11).
Our model is also based on a set of language modeling feature functions, {φlanguage

k }�k=1. The
set of features that can be used for language modeling is described in Chapter 9 and in Roark
et al. (2007).

We can extend the family of linear word sequence recognizers given to nonlinear
recognition functions. This extension is based on Mercer kernels often used in SVM
algorithms (Vapnik 1998). Recall that the update rule of the algorithm is wi = wi−1 + αi�φi
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Input: Training set T ={(x̄i , v̄i , p̄i , s̄i )}mi=1; valid. set Tvalid={(x̄i , v̄i , p̄i , s̄i )}mvalid
i=1 ;

parameter C.

Initialize: w0 = (wacoustic
0 , wlanguage

0 )

Loop for i = 1, . . . , m

Predict:

(v̄′, p̄′, s̄′)= arg max
v̄,p̄=lex(v̄)

[
max
s̄

wacoustic
i−1 · φacoustic(x̄i , p̄, s̄)+ wlanguage

i−1 · φlanguage(v̄)

]
Set:

�φacoustic
i = φacoustic(x̄i , p̄i , s̄i )− φacoustic(x̄i , p̄

′, s̄′)

�φ
language
i

= φlanguage(v̄i )− φlanguage(v̄′).
Set:

�(wi−1; (x̄i , v̄i , p̄i , s̄i ))
= max
v̄,p̄=lex(v̄)

[
γ (v̄i , v̄

′)− wacoustic
i−1 ·�φacoustic

i
−wlanguage

i−1 ·�φlanguage
i

]
+

If �(wi−1; (x̄i , v̄i , p̄i , s̄i )) > 0

Set:
αi =min

C, �(wi−1; (x̄i , v̄i , p̄i , s̄i ))
‖�φacoustic

i
‖2 + ‖�φlanguage

i
‖2


Update: wacoustic

i = wacoustic
i−1 + αi�φacoustic

i

wlanguage
i

= wlanguage
i−1 + αi�φlanguage

i
.

Output: The weight vector w∗ which achieves best performance on a validation set Tvalid:

w∗ = arg min
w∈{w1,...,wm}

mvalid∑
j=1

γ
(
v̄j , f (x̄j )

)

Figure 10.2 An iterative algorithm for phoneme recognition.

and that the initial weight vector is w0 = 0. Thus, wi can be rewritten as, wi =∑i
j=1 αj�φj

and f can be rewritten as

f (x̄)= arg max
p̄

max
s̄

i∑
j=1

αj (�φj · φ(x̄, v̄)). (10.17)

By substituting the definition of �φj and replacing the inner-product in Equation (10.17)
with a general kernel operator K(·, ·) that satisfies Mercer’s conditions (Vapnik 1998), we
obtain a nonlinear phoneme recognition function:

f (x̄)= arg max
p̄

max
s̄

i∑
j=1

αj (K(x̄j , v̄j ; x̄, v̄)−K(x̄j , v̄′j ; x̄, v̄)). (10.18)

It is easy to verify that the definition of αi given in Equation (10.16) can also be rewritten
using the kernel operator.
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10.5.3 The Decoder

Assuming we know the optimal weight vectors wacoustic and wlanguage, the maximization
over all word sequences in Equation (10.8) is a search problem (known also as the inference
problem). A direct search for the maximizer is not feasible since the number of possible word
sequences (and hence the number of possible phoneme and timing sequences) is exponential
in the size of the vocabulary, |V|. In this section we provide details about performing the
search with the kernel based model. Basically, the search algorithm in the kernel based model
is similar to that used for the HMMs and segment models, using dynamic programming to
find the most likely phoneme sequence.

First we derive the domain of all word sequences, which is the feasible region of our
search problems. Let us denote the grammar network G as a directed graph of all possible
word sequences (sentences) in the given language. The network G is also known as a finite-
state transducer (FST) (Mohri et al. 2007). Also denote the lexicon network L as a set of
graphs, where each graph in the set is the phonetic network, generated from the mapping
lex, corresponding to every word in the vocabulary V . The network L is also an FST. The
FST, generated from the composition of the grammar graph G and the set of the lexicon
network L, namely L ◦ G, is the mapping from phoneme sequences to word sequences. As
an optimization step the resulting FST is determined and minimized. We denote the final FST
by N , that is, N =min(det(L ◦ G)). The best word sequence is found by efficiently searching
the FST networkN for a sequence of phonemes (and a sequence of words) which is optimally
aligned to the acoustic signal and hence maximizes Equation (10.8). A detailed description
of the recursive algorithm is given in Section 4.6, where the search is done over the FST
network N rather than the known phoneme sequence in the problem of forced alignment.
Similarly to the complexity of the efficient search presented in Section 4.6, the complexity of
the search over the FST here is O(QN ||P ||x̄|3), where |QN | is the number of states in the
FST N . Again, in practice, we can use the assumption that the maximal length of an event is
bounded. This assumption reduces the complexity of the algorithm to be O(|QN ||P ||x̄|L2).

10.5.4 Complexity

To conclude this section we discuss the global complexity of our proposed method.
In the training phase, our algorithm performs m iterations, one iteration per training
example. At each iteration the algorithm evaluates the recognition function once, updates
the recognition function, if needed, and evaluates the new recognition function on a
validation set of size mvalid. Each evaluation of the recognition function takes an order
of O(|QN ||P ||x̄|L2) operations. Therefore the total complexity of our method becomes
O(mmvalid|QN ||P ||x̄|L2). Finally, we compare the complexity of our method with the
complexity of other algorithms which directly solve the SVM optimization problem given
in Equation (10.14). The algorithm given in Taskar et al. (2003) is based on the SMO
algorithm for solving SVM problems. While there is no direct complexity analysis for
this algorithm, in practice it usually requires at least m2 iterations, which results in a total
complexity of the order O(m2 |QN ||P ||x̄|L2). The complexity of the algorithm presented
in Tsochantaridis et al. (2004) depends on the choice of several parameters. For reasonable
choice of these parameters the total complexity is also of the order O(m2|QN ||P ||x̄|L2).
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Note that if the model is initiated with an already trained language model, the complexity of
its training should be added to the total complexity.

10.6 Discussion

This chapter proposes a framework for a large-margin kernel based continuous speech
recognizer. This framework is based on adaptation of known algorithms and techniques to
this specific task, while minimizing the word error rate directly, by jointly training both the
acoustic and the language models.

Most (if not all) of the successful speech recognizers are based on triphones. It is
claimed that contextual effects cause large variations in the way that different phonemes are
uttered (Young 1996). In order to address this issue, it is common to refine the set of phone
labels and use a distinct label for every phone and every pair of left and right contexts. This
distinct label is called a triphone. This refinement of the phone label set actually increases
the size of the output labels exponentially by 3: with 40 phonemes, there are 403 = 64 000
possible triphones. Some of them cannot occur due to linguistic concerns, leaving around
45 000 possible triphones. Others can rarely be found in the training data, resulting in a
poor estimation of the model parameters. While in generative models like HMM there is an
efficient way to train such a huge set of labels (tied-mixture system), this, however, is still an
open problem for kernel based models.

Another important issue is the efficiency of the kernel based algorithm when working
with nonlinear kernels. It was found out that the speech recognition task uses a huge amount
of supports (see Chapter 5), which dramatically affects the use of such models in real-life
speech applications. This acute point is also left for future work.
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Discriminative Keyword Spotting

David Grangier, Joseph Keshet and Samy Bengio

This chapter introduces a discriminative method for detecting and spotting keywords in
spoken utterances. Given a word represented as a sequence of phonemes and a spoken
utterance, the keyword spotter predicts the best time span of the phoneme sequence in
the spoken utterance along with a confidence. If the prediction confidence is above certain
level the keyword is declared to be spoken in the utterance within the predicted time span,
otherwise the keyword is declared as not spoken. The problem of keyword spotting training
is formulated as a discriminative task where the model parameters are chosen so the utterance
in which the keyword is spoken would have higher confidence than any other spoken
utterance in which the keyword is not spoken. It is shown theoretically and empirically
that the proposed training method resulted with a high area under the Receiver Operating
Characteristic (ROC) curve, the most common measure to evaluate keyword spotters. We
present an iterative algorithm to train the keyword spotter efficiently. The proposed approach
contrasts with standard spotting strategies based on Hidden Markov Models (HMMs), for
which the training procedure does not maximize a loss directly related to the spotting
performance. Several experiments performed on TIMIT and WSJ corpora show the advantage
of our approach over HMM-based alternatives.

11.1 Introduction

Keyword spotting aims at detecting any given keyword in spoken utterances. This task is
important in numerous applications, such as voice mail retrieval, voice command detection
and spoken term detection and retrieval. Previous work has focused mainly on several
variants of HMMs to address this intrinsically sequential problem. While the HMM-based
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approaches constitute the state-of-the-art, they suffer from several known limitations. Most
of these limitations are not specific to the keyword spotting problem, and are common
to other tasks such as speech recognition, as pointed out in Chapter 1. For instance, the
predominance of the emission probabilities in the likelihood, which tends to neglect duration
and transition models, or the Expectation Maximization (EM) training procedure, which is
prone to convergence to local optima. Other drawbacks are specific to the application of
HMMs to the keyword spotting task. In particular, the scarce occurrence of some keywords in
the training corpora often requires ad-hoc modifications of the HMM topology, the transition
probabilities or the decoding algorithm. The most acute limitation of HMM-based approaches
lies in their training objective. Typically, HMM training aims at maximizing the likelihood
of transcribed utterances, and does not provide any guarantees in terms of keyword spotting
performance.

The performance of a keyword spotting system is often measured by the ROC curve,
that is, a plot of the true positive (spotting a keyword correctly) rate as a function of the false
positive (mis-spotting a keyword) rate; see for example Benayed et al. (2004), Ketabdar et al.
(2006), Silaghi and Bourlard (1999). Each point on the ROC curve represents the system
performance for a specific trade-off between achieving a high true positive rate and a low
false positive rate. Since the preferred trade-off is not always defined in advance, systems
are commonly evaluated according to the averaged performance over all operating points.
This corresponds to preferring the systems that attain the highest Area Under the ROC Curve
(AUC).

In this study, we devise a discriminative large margin approach for learning to spot
any given keyword in any given speech utterance. The keyword spotting function gets as
input a phoneme sequence representing the keyword and a spoken utterance and outputs
a prediction of the time span of the keyword in the spoken utterance and a confidence. If
the confidence is above some predefined threshold, the keyword is declared to be spoken
in the predicted time span, otherwise the keyword is declared as not spoken. The goal
of the training algorithm is to maximize the AUC on the training data and on unseen
test data. We call an utterance in the training set in which the keyword is spoken a
positive utterance, and respectively, an utterance in which the keyword is not spoken a
negative utterance. Using the Wilcoxon–Mann–Whitney statistics (Cortes and Mohri 2004),
we formulate the training as a problem of estimating the model parameters such that
the confidence of the correct time span in a positive utterance would be higher than the
confidence of any time span in any negative utterance. Formally this problem is stated as a
convex optimization problem with constraints. The solution to this optimization problem is
a function which is shown analytically to attain high AUC on the training set and is likely
to have good generalization properties on unseen test data as well. Moreover, comparing
with HMMs, our approach is based on a convex optimization procedure, which converges
to the global optima, and it is based on a non-probabilistic framework, which offers greater
flexibility in selecting the relative importance of duration modeling with respect to acoustic
modeling.

The remainder of this chapter is organized as follows: Section 11.2 describes previous
work on keyword spotting, Section 11.3 introduces our discriminative large margin approach,
Section 11.4 presents different experiments comparing the proposed model with an HMM-
based solution. Finally, Section 11.5 draws some conclusions and delineates possible direc-
tions for future research.
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11.2 Previous Work

The research on keyword spotting has paralleled the development of the automatic speech
recognition (ASR) domain in the last thirty years. Like ASR, keyword spotting has first been
addressed with models based on Dynamic Time Warping (DTW) (Bridle 1973; Higgins and
Wohlford 1985). Then, approaches based on discrete HMMs were introduced (Kawabata
et al. 1988). Finally, discrete HMMs have been replaced by continuous HMMs (Rabiner and
Juang 1993).

The core objective of a keyword spotting system is to discriminate between utterances
in which a given keyword is uttered and utterances in which the keyword is not uttered. For
this purpose, the first approaches based on DTW proposed to compute the alignment distance
between a template utterance representing the target keyword and all possible segments of the
test signal (Bridle 1973). In this context, the keyword is considered as detected in a segment
of the test utterance whenever the alignment distance is below some predefined threshold.
Such approaches are, however, greatly affected by speaker mismatch and varying recording
conditions between the template sequence and the test signal. To gain some robustness,
it has then been proposed to compute alignment distances not only with respect to the
target keyword template, but also with respect to other keyword templates (Higgins and
Wohlford 1985). Precisely, given a test utterance, the system identifies the concatenation
of templates with the lowest distance to the signal and the keyword is considered as detected
if this concatenation contains the target keyword template. Therefore, the keyword alignment
distance is not considered as an absolute number, but relatively to the distances to other
templates, which increase robustness with respect to changes in the recording conditions.

Along with the development of the speech research, increasingly large amounts of labeled
speech data were collected, and DTW-based techniques started showing their shortcomings
to leverage from large training sets. In particular, large corpora contain thousands of words
and dozens of instances for each word. Considering each instance as a template makes the
search for the best template concatenation a prohibitively expensive task. Consequently,
discrete HMMs were introduced for ASR (Bahl et al. 1986), and then for keyword spotting
(Kawabata et al. 1988; Wilpon et al. 1990). A discrete HMM assumes that the quantized
acoustic feature vectors representing the input utterance are independent conditioned on the
hidden state variables. This type of model introduces several advantages compared to DTW-
based approaches, including an improved robustness to speaker and channel changes, when
several training utterances of the targeted keyword are available. However, the most important
evolution introduced with the HMM certainly lies in the development of phone or triphone-
based modeling (Kawabata et al. 1988; Lee and Hon 1988; Rose and Paul 1990), in which
a word model is composed of several sub-unit models shared across words. This means that
the model of a given word not only benefits from the training utterances containing this
word, but also from all the utterances containing its sub-units. Additionally, great scalability
is achieved with such an approach since the number of acoustic parameters is proportional
to the number of sub-units and does not grow linearly with the corpus size, as opposed to
template-based approaches. A further advantage of phone-based modeling is the ability to
spot words unavailable at training time, as this paradigm allows one to build a new word
model by composing already trained sub-unit models. This aspect is very important, since in
most applications the set of test keywords is not known in advance.
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Soon after the application of discrete HMMs to speech problems, continuous density
HMMs have been introduced in the ASR community (Rabiner and Juang 1993). Continuous
HMMs eliminate the need of acoustic vector quantization, as the distributions associated
with the HMM states are continuous densities, often modeled by Gaussian Mixture Models
(GMMs). The learning of both GMM parameters and the state transition probabilities is
performed in a single integrated framework, maximizing the likelihood of the training data
given its transcription through the EM algorithm (Bilmes 1998). This approach has been
shown to be more effective and allows greater flexibility for speaker or channel adaptation
(Rabiner and Juang 1993). It is now the most widely used approach for both ASR and
keyword spotting.

In the context of keyword spotting, different strategies based on continuous HMMs have
been proposed. In most cases, a sub-unit based HMM is trained over a large corpus of
transcribed data and a new model is then built from the sub-unit models. Such a model is
composed of two parts, a keyword HMM and a filler or garbage HMM, which respectively
model the keyword and non-keyword parts of the signal. This topology is depicted in
Figure 11.1. Given such a model, keyword detection is performed by searching for the
sequence of states that yields the highest likelihood for the provided test sequence through
Viterbi decoding. Keyword detection is determined by checking whether the Viterbi best-path
passes through the keyword model or not. In such a model, the selection of the transition
probabilities in the keyword sets the trade-off between low false alarm rate (detecting a
keyword when it is not presented), and low false rejection rate (not detecting a keyword
when it is indeed presented). Another important aspect of this approach lies in the modeling
of non-keyword parts of the signal, and several choices are possible for the garbage HMM.
The simplest choice models garbage with an HMM that fully connects all sub-unit models
(Rose and Paul 1990), while the most complex choice models garbage with a full-large
vocabulary HMM, where the lexicon excludes the keyword (Weintraub 1993). The latter
approach obviously yields a better garbage model, using additional linguistic knowledge.
This advantage, however, induces a higher decoding cost and requires a larger amount of
training data, in particular for language model training. Besides practical concerns, one can
conceptually wonder whether an automatic spotting approach should require such a large
linguistic knowledge. Of course, several variations of garbage models exist between the two
extreme examples pointed out above (see for instance Boite et al. (1993)).

Viterbi decoding relies on a sequence of local decisions to determine the best path, which
can be fragile with respect to local model mismatch. In the context of HMM-based keyword
spotting, a keyword can be missed if only its first phoneme suffers such a mismatch, for
instance. To gain some robustness, likelihood ratio approaches have been proposed (Rose
and Paul 1990; Weintraub 1995). In this case, the confidence score output from the keyword
spotter corresponds to the ratio between the likelihood estimated by an HMM including
the occurrence of the target keyword, and the likelihood estimated by an HMM excluding
it. These HMM topologies are depicted in Figure 11.2. Detection is then performed by
comparing the output scores to a predefined threshold. Different variations on this likelihood
ratio approach have then been devised, such as computing the ratio only on the part of the
signal where the keyword is assumed to be detected (Junkawitsch et al. 1997). Overall,
all the above methods are variations over the same HMM paradigm, which consists in
training a generative model through likelihood maximization, before introducing different
modifications prior to decoding in order to address the keyword spotting task. In other
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Keyword HMM

Garbage HMM

Figure 11.1 HMM topology for keyword spotting with a Viterbi best-path strategy. This
approach verifies whether the Viterbi best-path passes through the keyword sub-model.

Keyword HMM Garbage HMMGarbage HMM

(a)

Garbage HMM

(b)

Figure 11.2 HMM topology for keyword spotting with a likelihood ratio strategy. This
approach compares the likelihood of the sequence given that the keyword is uttered (a) with
the likelihood of the sequence given that the keyword is not uttered (b).

words, these approaches do not propose to train the model so as to maximize the spotting
performance, and the keyword spotting task is only introduced in the inference step after
training.

Only few studies have proposed discriminative parameter training approaches to circum-
vent this weakness (Benayed et al. 2003; Sandness and Hetherington 2000; Sukkar et al.
1996; Weintraub et al. 1997). Sukkar et al. (1996) proposed to maximize the likelihood ratio
between the keyword and garbage models for keyword utterances and to minimize it over a
set of false alarms generated by a first keyword spotter. Sandness and Hetherington (2000)
proposed to apply Minimum Classification Error (MCE) to the keyword spotting problem.
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The training procedure updates the acoustic models to lower the score of non-keyword
models in the part of the signal where the keyword is uttered. However, this procedure does
not focus on false alarms, and does not aim at lowering the score of the keyword models
in parts of the signal where the keyword is not uttered. Other discriminative approaches
have been focused on combining different HMM-based keyword detectors. For instance,
Weintraub et al. (1997) trained a neural network to combine likelihood ratios from different
models. Benayed et al. (2003) relied on Support Vector Machines (SVMs) to combine
different averages of phone-level likelihoods. Both of these approaches propose to minimize
the error rate, which equally weights the two possible spotting errors, false positive (or false
alarm) and false negative (missed keyword occurrence, often called keyword deletion). This
measure is, however, barely used to evaluate keyword spotters, due to the unbalanced nature
of the problem. Precisely, the targeted keywords generally occur rarely and hence the number
of potential false alarms highly exceeds the number of potential missed detections. In this
case, the useless model which never predicts the keyword avoids all false alarms and yields
a very low error rate, with which it is difficult to compete. For that reason the AUC is more
informative and is commonly used to evaluate models. Attaining high AUC would hence be
an appropriate learning objective for the discriminative training of a keyword spotter. To the
best of our knowledge, only Chang (1995) proposed an approach targeting this goal. This
work introduces a methodology to maximize the figure-of-merit (FOM), which corresponds
to the AUC over a specific range of false alarm rates. However, the proposed approach relies
on various heuristics, such as gradient smoothing and sorting approximations, which does
not ensure any theoretical guarantee on obtaining high FOM. Also, these heuristics involve
the selection of several hyperparameters, which challenges a practical use.

In the following, we introduce a model that aims at achieving high AUC over a set of
training examples, and constitutes a truly discriminative approach to the keyword spotting
problem. The proposed model relies on large margin learning techniques for sequence
prediction and provides theoretical guarantees regarding the generalization performance.
Furthermore, its efficient learning procedure ensures scalability toward large problems and
simple practical use.

11.3 Discriminative Keyword Spotting

This section formalizes the keyword spotting problem, and introduces the proposed approach.
First, we describe the problem of keyword spotting formally. This allows us to introduce a
loss derived from the definition of the AUC. Then, we present our model parameterization
and the training procedure to minimize efficiently a regularized version of this loss. Finally,
we give an analysis of the iterative algorithm, and show that it achieves a high cumulative
AUC in the training process and high expected AUC on unseen test data.

11.3.1 Problem Setting

In the keyword spotting task, we are provided with a speech signal composed of a sequence of
acoustic feature vectors x̄= (x1, . . . , xT ), where xt ∈ X ⊂ R

d , for all 1≤ t ≤ T , is a feature
vector of length d extracted from the tth frame. Naturally, the length of the acoustic signal
varies from one signal to another and thus T is not fixed. We denote a keyword by k ∈K,
where K is a lexicon of words. Each keyword k is composed of a sequence of phonemes
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s1 s4s3s2

kkeyword

keyword phoneme sequence

time-span sequence

star

s t aa rpk

s+ e5

Figure 11.3 Example of our notation. The waveform of the spoken utterance ‘a lone star
shone. . .’ taken from the TIMIT corpus. The keyword k is the word star. The phonetic
transcription p̄k along with the time span sequence s̄+ is depicted in the figure.

p̄k = (p1, . . . , pL), where pl ∈ P for all 1≤ l ≤ L and P is the domain of the phoneme
symbols. The number of phonemes in each keyword may vary from one keyword to another
and hence L is not fixed. We denote by P∗ (and similarly X ∗) the set of all finite length
sequences over P . Let us further define the time span of the phoneme sequence p̄k in the
speech signal x̄. We denote by sl ∈ {1, . . . , T } the start time (in frame units) of phoneme
pl in x̄, and by el ∈ {1, . . . , T } the end time of phoneme pl in x̄. We assume that the start
time of any phoneme pl+1 is equal to the end time of the previous phoneme pl , that is,
el = sl+1 for all 1≤ l ≤ L− 1. We define the time span (or segmentation) sequence as s̄k =
(s1, . . . , sL, eL). An example of our notation is given in Figure 11.3. Our goal is to learn a
keyword spotter, denoted f : X ∗ × P∗ → R, which takes as input the pair (x̄, p̄k) and returns
a real valued score expressing the confidence that the targeted keyword k is uttered in x̄. By
comparing this score with a threshold b ∈ R, we can determine whether p̄k is uttered in x̄.

In discriminative supervised learning we are provided with a training set of examples and a
test set (or evaluation set). Specifically, in the task of discriminative keyword spotting we are
provided with a two sets of keywords. The first set Ktrain is used for training and the second
set Ktest is used for evaluation. Note that the lexicon of keywords is a union of both the
training set and the test set, K =Ktrain ∪Ktest. Algorithmically, we do not restrict a keyword
to be only in one set and a keyword that appears in the training set can appear also in the test
set. Nevertheless, in our experiments we picked different keywords for training and test and
hence Ktrain ∩Ktest = ∅.

A keyword spotter f is often evaluated using the ROC curve. This curve plots the true
positive rate (TPR) as a function of the false positive rate (FPR). The TPR measures the
fraction of keyword occurrences correctly spotted, while the FPR measures the fraction of
negative utterances yielding a false alarm. The points on the curve are obtained by sweeping
the threshold b from the largest value output by the system to the smallest one. These values
hence correspond to different trade-offs between the two types of errors a keyword spotter
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can make, i.e. missing a keyword utterance or raising a false alarm. In order to evaluate a
keyword spotter over various trade-offs, it is common to report the AUC as a single value.
The AUC hence corresponds to an averaged performance, assuming a flat prior over the
different operational settings. Given a keyword k, a set of positive utterances X+k in which
k is uttered, and a set of negative utterances X−k in which k is not uttered, the AUC can be
written as

Ak = 1

|X+k ||X−k |
∑

x̄+∈X+k

∑
x̄−∈X−k

�{f (p̄k,x̄+)>f (p̄k,x̄−)},

where | · | refers to set cardinality and �{π} refers to the indicator function and its value is 1
if the predicate π holds and 0 otherwise. The AUC of the keyword k, Ak , hence estimates the
probability that the score assigned to a positive utterance is greater than the score assigned to a
negative utterance. This quantity is also referred to as the Wilcoxon–Mann–Whitney statistics
(Cortes and Mohri 2004; Mann and Whitney 1947; Wilcoxon 1945).

As one is often interested in the expected performance over any keyword, it is common
to plot the ROC averaged over a set of evaluation keywords Ktest, and to compute the
corresponding averaged AUC:

Atest = 1

|Ktest|
∑
k∈Ktest

Ak.

In this study, we introduce a large-margin approach to learn a keyword spotter f from a
training set, which achieves a high averaged AUC.

11.3.2 Loss Function and Model Parameterization

In order to build our keyword spotter f , we are given training data consisting of a set of
training keywords Ktrain and a set of training utterances. For each keyword k ∈Ktrain, we
denote with X+k the set of utterances in which the keyword is spoken and with X−k the set
of all other utterances, in which the keyword is not spoken. Furthermore, for each positive
utterance x̄+ ∈X+k , we are also given the timing sequence s̄+ of the keyword phoneme
sequence p̄k in x̄+. Such a timing sequence provides the start and end points of each of
the keyword phonemes, and can either be provided by manual annotators or localized with
a forced alignment algorithm, as discussed in Chapter 4. Let us define the training set as
Ttrain ≡ {(pki , x̄+i , s̄

+
i , x̄−i )}mi=1. For each keyword in the training set there is only one positive

utterance and one negative utterance, hence |X+k | = 1, |X−k | = 1 and |Ktrain| =m, and the
AUC over the training set becomes

Atrain = 1

m

m∑
i=1

�{f (p̄ki ,x̄+i )>f (p̄ki ,x̄−i )}.

The selection of a model maximizing this AUC is equivalent to minimizing the loss:

L0/1(f )= 1− Atrain = 1

m

m∑
i=1

�{f (p̄ki ,x̄+i )>f (p̄ki ,x̄−i )}.

The loss L0/1 is unfortunately not suitable for model training since it is a combinatorial
quantity that is difficult to minimize directly. We instead adopt a strategy commonly used in
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large margin classifiers and employ the convex hinge loss function:

L(f )= 1

m

m∑
i=1

[1− f (p̄ki , x̄+i )+ f (p̄ki , x̄−i )]+, (11.1)

where [a]+ denotes max{0, a}. The hinge loss L(f ) upper bounds L0/1(f ): since for
any real numbers a and b, [1− a + b]+ ≥ �{a≤b}, and moreover, when L(f )= 0, then
Atrain = 1, and for any a and b, [1− a + b]+ = 0⇒ a > b + 1⇒ a > b. The hinge loss
is related to the ranking loss used in both SVMs for ordinal regression (Herbrich et al.
2000) and Ranking SVM (Joachims 2002). These approaches have shown to be successful
over highly unbalanced problems, such as information retrieval (Grangier and Bengio 2008;
Joachims 2002); using the hinge loss is hence appealing to the keyword spotting problem.
The analysis of the relationships between the hinge loss presented in Equation (11.1) and the
generalization performance of our keyword spotter is differed to Section 11.3.4, where we
show that minimizing the hinge loss yields a keyword spotter likely to attain a high AUC
over unseen data.

Our keyword spotter f is parameterized as

fw(x̄, p̄k)=max
s̄

w · φ(x̄, p̄k, s̄), (11.2)

where w ∈ R
n is a vector of importance weights, φ(x̄, p̄k, s̄) is a feature function vector,

measuring different characteristics related to the confidence that the phoneme sequence p̄k

representing the keyword k is uttered in x̄ with the time span s̄. Formally, φ is a function
defined as φ : X ∗ × (P × N)∗ → R

n. In this study we used seven feature functions (n= 7),
which are similar to those employed in Chapter 4. These functions are described only briefly
for the sake of completeness.

There are four phoneme transition functions, which aim at detecting transition between
phonemes. For this purpose, they compute the frame distance between the frames before and
after a hypothesized transition point. Formally,

∀i = 1, 2, 3, 4, φi(x̄, p̄k, s̄)= 1

L

L−1∑
j=2

d(xsj−i , xsj+i ), (11.3)

where d refers to the Euclidean distance and L refers to the number of phonemes in
keyword k.

The frame based phoneme classifier function relies on a frame based phoneme classifier
to measure the match between each frame and the hypothesized phoneme class,

φ5(x̄, p̄k, s̄)= 1

L

L∑
i=1

si+1−1∑
t=si

1

si+1 − si g(xt , pi) (11.4)

where g : X × P→ R refers to the phoneme classifier, which returns a confidence that the
acoustic feature vector at the tth frame, xt , represents a specific phoneme pi . Different
phoneme classifiers might be applied for this feature. In our case, we conduct experiments
relying on two alternative solutions. The first assessed classifier is the hierarchical large-
margin classifier presented in Dekel et al. (2004), while the second classifier is a Bayes
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classifier with one Gaussian Mixture per phoneme class. In the first case, g is defined as
the phoneme confidence output by the classifier, while, in the second case, g is defined as the
log posterior of the class g(x, p)= log(P (p|x)). The presentation of the training setup, as
well as the empirical comparison of both solutions, is deferred to Section 11.4.

The phoneme duration function measures the adequacy of the hypothesized segmentation
s̄, with respect to a duration model,

φ6(x̄, p̄k, s̄)= 1

L

L∑
i=1

log N (si+1 − si; µpi , σ 2
pi
), (11.5)

where N denotes the likelihood of a Gaussian duration model, whose mean µp and variance
σ 2
p parameters for each phoneme p are estimated over the training data.

The speaking rate function measures the stability of the speaking rate,

φ7(x̄, p̄k, s̄)= 1

L

L∑
i=2

(ri − ri−1)
2, (11.6)

where ri denotes the estimate of the speaking rate for the ith phoneme,

ri = si+1 − si
µpi

.

This set of seven functions has been used in our experiments. Of course, this set can easily
be extended to incorporate further features, such as confidences from a triphone frame based
classifier or the output of a more refined duration model.

In other words, our keyword spotter outputs a confidence score by maximizing a weighted
sum of feature functions over all possible time spans. This maximization corresponds to a
search over an exponentially large number of time spans. Nevertheless, it can be performed
efficiently by selecting decomposable feature functions, which allows the application of
dynamic programming techniques, like those used in HMMs (Rabiner and Juang 1993).
Chapter 4 gives a detailed discussion about the efficient computation of Equation (11.2).

11.3.3 An Iterative Training Algorithm

In this section we describe an iterative algorithm for finding the weight vector w. We show
in the sequel that the weight vector w found in this process minimizes the loss L(fw), hence
minimizes the loss L0/1 and in turn resulted in a keyword spotting which attains a high AUC
over the training set. We also show that the learned weight vector has good generalization
properties on the test set.

The procedure starts by initializing the weight vector to be the zero vector, w0 = 0. Then,
at iteration i ≥ 1, the algorithm examines the ith training example (p̄ki , x̄+i , s̄

+
i , x̄−i ). The

algorithm first predicts the best time span of the keyword phoneme sequence p̄ki in the
negative utterance x̄−i :

s̄−i = arg max
s̄

wi−1 · φ(x̄−i , p̄ki , s̄). (11.7)

Then, the algorithm considers the loss on the ith training example and checks that the
difference between the score assigned to the positive utterance and the score assigned to
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the negative example is greater than 1. Formally, define

�φi = φ(x̄+i , p̄ki , s̄+i )− φ(x̄−i , p̄ki , s̄−i ).
If wi−1 ·�φi ≥ 1 the algorithm keeps the weight vector for the next iteration, namely,
wi = wi−1. Otherwise, the algorithm updates the weight vector to minimize the following
optimization problem:

wi = arg min
w

1
2‖w− wi−1‖2 + c[1− w ·�φi ]+, (11.8)

where the hyperparameter c ≥ 1 controls the trade-off between keeping the new weight
vector close to the previous one and satisfying the constraint for the current example.
Equation (11.8) can analytically be solved in closed form (Crammer et al. 2006), yielding

wi = wi−1 + αi�φi ,
where

αi =min

{
c,
[1− wi−1 ·�φi]+

‖�φi‖2

}
. (11.9)

This update is referred to as passive–aggressive, since the algorithm passively keeps the
previous weight (wi = wi−1) if the loss of the current training example is already zero ([1−
wi−1 ·�φi]+ = 0), while it aggressively updates the weight vector to compensate this loss
otherwise. At the end of the training procedure, when all training examples have been visited,
the best weight w among {w0, . . . ,wm} is selected over a set of validation examples Tvalid.
The hyperparameter c is also selected to optimize performance on the validation data. The
pseudo-code of the algorithm is given in Figure 11.4.

11.3.4 Analysis

In this section, we derive theoretical bounds on the performance of our keyword spotter. Let
us first define the cumulative AUC on the training set Ttrain as follows:

Âtrain = 1

m

m∑
i=1

�{wi−1·φ(x̄+i ,p̄ki ,s̄+i )>wi−1·φ(x̄−i ,p̄ki ,s̄−i )}, (11.10)

where s̄−i is generated every iteration step according to Equation (11.7). The examination
of the cumulative AUC is of great interest as it provides an estimator for the general-
ization performance. Note that at each iteration step the algorithm receives new example
(pki , x̄+i , s̄

+
i , x̄−i ) and predicts the time span of the keyword in the negative instance x̄−i using

the previous weight vector wi−1. Only after the prediction is made the algorithm suffers loss
by comparing its prediction to the true time span s̄+i of the keyword on the positive utterance
x̄+i . The cumulative AUC is a weighted sum of the performance of the algorithm on the next
unseen training example and hence it is a good estimation of the performance of the algorithm
on unseen data during training.

Our first theorem states a competitive bound. It compares the cumulative AUC of the
weight vectors series, {w1, . . . , wm}, resulted from the iterative algorithm to the best fixed
weight vector, w�, chosen in hindsight, and essentially proves that, for any sequence of
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Input: Training set Ttrain, validation set Tvalid; parameter c.
Initialize: w0 = 0.

Loop: for each (pki , x̄+i , s̄
+
i , x̄−i ) ∈ Ttrain

1. let s̄−i = arg maxs̄ wi−1 · φ(x̄−i , p̄ki , s̄)
2. let �φi = φ(x̄+i , p̄ki , s̄+i )− φ(x̄−i , p̄ki , s̄−i )
3. if wi−1 ·�φi < 1 then

let αi =min

{
c,

1− wi−1 ·�φi
‖�φi‖2

}
update wi = wi−1 + αi ·�φi

Output: w achieving the highest AUC over Tvalid:

w= arg min
w∈{w1,...,wm}

1

mvalid

mvalid∑
j=1

�{maxs̄+ w·φ(x̄+j ,p̄kj ,s̄+)>maxs̄− w·φ(x̄−j ,p̄kj ,s̄−)}

Figure 11.4 Passive–aggressive training.

examples, our algorithms cannot do much worse than the best fixed weight vector. Formally,
it shows that the cumulative area above the curve, 1− Âtrain, is smaller than the weighted
average loss L(fw� ) of the best fixed weight vector w� and its weighted complexity, ‖w�‖.
That is, the cumulative AUC of the iterative training algorithm is going to be high, given that
the loss of the best solution is small, the complexity of the best solution is small and that the
number of training examples,m, is sufficiently large.

Theorem 11.3.1 Let Ttrain = {(p̄ki , x̄+i , s̄
+
i , x̄−i )}mi=1 be a set of training examples and

assume that for all k, x̄ and s̄ we have that ‖φ(x̄, p̄k, s̄)‖ ≤ 1/
√

2. Let w� be the best weight
vector selected under some optimization criterion by observing all instances in hindsight.
Let w1, . . . , wm be the sequence of weight vectors obtained by the algorithm in Figure 11.4
given the training set Ttrain. Then,

1− Âtrain ≤ 1

m
‖w�‖2 + 2c

m
L(fw� ) (11.11)

where c ≥ 1 and Âtrain is the cumulative AUC defined in Equation 11.10.

Proof. Denote by �i(w) the instantaneous loss the weight vector w suffers on the ith
example, that is,

�i(w)= [1− w · φ(x̄+i , p̄ki , s̄+i )+max
s̄

w · φ(x̄−i , p̄ki , s̄)]+.
The proof of the theorem relies on Lemma 1 and Theorem 4 in Crammer et al. (2006).
Lemma 1 in Crammer et al. (2006) implies that

m∑
i=1

αi(2�i(wi−1)− αi‖�φi‖2 − 2�i(w�))≤ ‖w�‖2. (11.12)
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Now if the algorithm makes a prediction mistake and the predicted confidence of the best
time span of the keyword in a negative utterance is higher than the confidence of the true
time span of the keyword in the positive example, then �i(wi−1)≥ 1. Using the assumption
that ‖φ(x̄, p̄k, s̄)‖ ≤ 1/

√
2, which means that ‖�φ(x̄, p̄k, s̄)‖2 ≤ 1, and the definition of αi

given in Equation 11.9, when substituting [1− wi−1 ·�φi]+ for �i(wi−1) in its numerator,
we conclude that if a prediction mistake occurs then it holds that

αi�i(wi−1)≥min

{
�i(wi−1)

‖�φi‖2 , c

}
≥min{1, c} = 1. (11.13)

Summing over all the prediction mistakes made on the entire training set Ttrain and taking
into account that αi�i(wi−1) is always non-negative, we have

m∑
i=1

αi�i(wi−1) ≥
m∑
i=1

�{wi−1·φ(x̄+i ,p̄ki ,s̄+i )≤wi−1·φ(x̄−i ,p̄ki ,s̄−i )}. (11.14)

Again using the definition of αi , we know that αi�i(w�) ≤ c�i(w�) and that αi‖�φi‖2 ≤
�i(wi−1). Plugging these two inequalities and Equation (11.14) into Equation (11.12) we get

m∑
i=1

�{wi−1·φ(x̄+i ,p̄ki ,s̄+i )≤wi−1·φ(x̄−i ,p̄ki ,s̄−i )} ≤ ‖w
�‖2 + 2c

m∑
i=1

�i(w�). (11.15)

The theorem follows by replacing the sum over prediction mistakes to a sum over prediction
hits and plugging the definition of the cumulative AUC given in Equation (11.10). �

The next theorem states that the output of our algorithm is likely to have good general-
ization, namely, the expected value of the AUC resulted from decoding on unseen test set is
likely to be large.

Theorem 11.3.2 Under the same conditions of Theorem 11.3.1 assume that the training set
Ttrain and the validation set Tvalid are both sampled i.i.d. from a distribution D. Denote by
mvalid the size of the validation set. With probability of at least 1− δ we have

1− A= ED[�{f (x̄+,p̄k)≤f (x̄−,p̄k)}] = PrD[f (x̄+, p̄k) ≤ f (x̄−, p̄k)]

≤ 1

m

m∑
i=1

�i(w�)+ ‖w
�‖2

m
+
√

2 ln(2/δ)√
m

+
√

2 ln(2m/δ)√
mvalid

, (11.16)

where A is the mean AUC defined as A= ED[�{f (x̄+,p̄k)>f (x̄−,p̄k)}] and

�i(w)=
[
1− w · φ(x̄+i , p̄ki , s̄+i )+max

s̄
w · φ(x̄−i , p̄ki , s̄)

]
+.

The proof of the theorem goes along the lines of the proof of Theorem 4.5.2 in Chapter 4.
The theorem states that the resulted w of the iterative algorithm generalizes, with high
probability, and is going to have high expected AUC on unseen test data.
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11.4 Experiments and Results

We started by training the iterative algorithm on the TIMIT training set. We then conducted
two types of experiments to evaluate the effectiveness of the proposed discriminative method.
First, we compared the performance of the discriminative method with a standard monophone
HMM keyword spotter on the TIMIT test set. Second, we compared the robustness of both
the discriminative method and the monophone HMM with respect to changing recording
conditions by using the models trained on the TIMIT, evaluated on the Wall Street Journal
(WSJ) corpus.

11.4.1 The TIMIT Experiments

The TIMIT corpus (Garofolo 1993) consists of read speech from 630 American speakers,
with 10 utterances per speaker. The corpus provides manually aligned phoneme and word
transcriptions for each utterance. It also provides a standard split into training and test data.
From the training part of the corpus, we extracted three disjoint sets consisting of 1500, 300
and 200 utterances. The first set was used as the training set of the phoneme classifier and
was used by our fifth feature function φ5. The second set was used as the training set for our
discriminative keyword spotter, while the third set was used as the validation set to select the
hyperparameter c and the best weight vector w seen during training. The test set was solely
used for evaluation purposes. From each of the last two splits of the training set, 200 words
of length greater than or equal to four phonemes were chosen in random. From the test set 80
words were chosen in random as described below.

Mel-frequency cepstral coefficients (MFCC), along with their first (�) and second
derivatives (��), were extracted every 10 ms. These features were used by the first five
feature functions φ1, . . . , φ5. Two types of phoneme classifier were used for the fifth feature
function φ5, namely, a large margin phoneme classifier (Dekel et al. 2004) and a GMM
model. Both classifiers were trained to predict 39 phoneme classes (Lee and Hon 1989) over
the first part of the training set. The large margin classifier corresponds to a hierarchical
classifier with Gaussian kernel, as presented in Dekel et al. (2004), where the score assigned
to each frame for a given phoneme was used as the function g in Equation (11.4). The
GMM model corresponded to a Bayes classifier combining one GMM per class and the
phoneme prior probabilities, both learned from the training data. In that case, the log
posterior of a phoneme given the frame vector was used as the function g in Equation (11.4).
The hyperparameters of both phoneme classifiers were selected to maximize the frame
accuracy over part of the training data held out during parameter fitting. In the following,
the discriminative keyword spotter relying on the features from the hierarchical phoneme
classifier is referred to as Discriminative/Hier, while the model relying on the GMM log
posteriors is referred to as Discriminative/GMM.

We compared the results of both Discriminative/Hier and Discriminative/GMM with a
monophone HMM baseline, in which each phoneme was modeled with a left–right HMM
of five emitting states. The density of each state was modeled with a 40-Gaussian GMM.
Training was performed over the whole TIMIT training set. Embedded training was applied,
i.e. after an initial training phase relying on the provided phoneme alignment, a second
training phase which dynamically determines the most likely alignment was applied. The
hyperparameters of this model (the number of states per phoneme, the number of Gaussians
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Table 11.1 Area under the ROC curve (AUC) of different models trained on the TIMIT
training set and evaluated on the TIMIT test set (the higher the better)

Model AUC

HMM/Viterbi 0.942
HMM/Ratio 0.952
Discriminative/GMM 0.971
Discriminative/Hier 0.996

per state, as well as the number of expectation-maximization iterations) were selected to
maximize the likelihood of a held-out validation set.

The phoneme models of the trained HMM were then used to build a keyword spotting
HMM, composed of two sub-models: the keyword model and the garbage model, as
illustrated in Figure 11.1. The keyword model was an HMM which estimated the likelihood
of an acoustic sequence given that the sequence represented the keyword phoneme sequence.
The garbage model was an HMM composed of all phoneme HMMs fully connected to each
other, which estimated the likelihood of any phoneme sequence. The overall HMM fully
connected the keyword model and the garbage model. The detection of a keyword in a
given utterance was performed by checking whether the Viterbi best path passes through
the keyword model, as explained in Section 11.2. In this model, the keyword transition
probability set the trade-off between the true positive rate and the ROC curve was plotted
by varying this probability. This model is referred to as HMM/Viterbi.

We also experimented with an alternative decoding strategy, in which the system output
the ratio of the likelihood of the acoustic sequence knowing the keyword was uttered
versus the likelihood of the sequence knowing the keyword was not uttered, as discussed
in Section 11.2. In this case, the first likelihood was determined by an HMM forcing an
occurence of the keyword, and the second likelihood was determined by the garbage model,
as illustrated in Figure 11.2. This likelihood-ratio strategy is referred to as HMM/Ratio in the
following.

The evaluation of discriminative and HMM-based models was performed over 80
keywords, randomly selected among the words occurring in the TIMIT test set. This random
sampling of the keyword set aimed at evaluating the expected performance over any keyword.
For each keyword k, we considered a spotting problem, which consisted of a set of positive
utterances X+k and a set of negative utterance X−k . Each positive set X+k contained between
1 and 20 sequences, depending on the number of occurrences of k in the TIMIT test set.
Each negative set contained 20 sequences, randomly sampled among the utterances of TIMIT
which do not contain k. This setup represented an unbalanced problem, with only 10% of the
sequences being labeled as positive.

Table 11.1 reports the average AUC results of the 80 test keywords, for different models
trained on the TIMIT training set and evaluated on the TIMIT test set. These results show
the advantage of our discriminative approach. The two discriminative models outperform
the two HMM-based models. The improvement introduced by our discriminative model
algorithm can be observed when comparing the performance of Discriminative/GMM with
the performance of the HMM spotters. In that case, both spotters rely on GMMs to estimate
the frame likelihood given a phoneme class. In our case we use that probability to compute
the feature φ5, while the HMM uses it as the state emission probability.
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Table 11.2 The distribution of the 80 keywords among the models which better spotted them.
Each row in the table represents the keywords for which the model written at the beginning
of the row received the highest area under the ROC curve. The models were trained on the
TIMIT training set and evaluated on the TIMIT test set

Best model Keywords

Discriminative/Hier absolute admitted apartments apparently argued controlled depicts
dominant drunk efficient followed freedom introduced millionaires
needed obvious radiation rejected spilled street superb sympathetically
weekday (23 keywords)

HMM/Ratio materials (1 keyword)

No differences aligning anxiety bedrooms brand camera characters cleaning cli-
mates creeping crossings crushed decaying demands dressy episode
everything excellent experience family firing forgiveness fulfillment
functional grazing henceforth ignored illnesses imitate increasing
inevitable January mutineer package paramagnetic patiently pleasant
possessed pressure recriminations redecorating secularist shampooed
solid spreader story strained streamlined stripped stupid surface swim-
ming unenthusiastic unlined urethane usual walking (56 keywords)

Moreover, our keyword spotter can benefit from non-probabilistic frame based classifiers,
as illustrated with Discriminative/Hier. This model relies on the output of a large margin
classifier, which outperforms all other models, and reaches a mean AUC of 0.996. In
order to verify whether the differences observed on averaged AUC could be due only to
a few keywords, we applied the Wilcoxon test (Rice 1995) to compare the results of both
HMM approaches (HMM/Viterbi and HMM/Ratio) with the results of both discriminative
approaches (Discriminative/GMM and Discriminative/Hier). At the 90% confidence level,
the test rejected this hypothesis, showing that the performance gain of the discriminative
approach is consistent over the keyword set.

Table 11.2 further presents the performance per keyword and compares the results of
the best HMM configuration, HMM/Ratio with the performance of the best discriminative
configuration, Discriminative/Hier. Out of a total of 80 keywords, 23 keywords were better
spotted with the discriminative model, one keyword was better spotted with the HMM, and
both models yielded the same spotting accuracy for 56 keywords. The discriminative model
seems to be better for shorter keywords, as it outperforms the HMM for most of the keywords
of five phonemes or less (e.g. drunk, spilled, street).

11.4.2 The WSJ Experiments

WSJ (Paul and Baker 1992) is a large corpus of American English. It consists of read
and spontaneous speech corresponding to the reading and the dictation of articles from the
Wall Street Journal. In the following, all models were trained on the TIMIT training set
and evaluated on the si_tr_s subset of WSJ. This subset corresponds to the recordings
of 200 speakers. Compared with TIMIT, this subset introduces several variations, both
regarding the type of sentences recorded and the recording conditions (Paul and Baker 1992).
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Table 11.3 Area under the ROC curve (AUC) of different models trained on the TIMIT
training set and evaluated on the si_tr_s subset of WSJ (the higher the better)

Model AUC

HMM/Viterbi 0.868
HMM/Ratio 0.884
Discriminative/GMM 0.922
Discriminative/Hier 0.914

These experiments hence evaluate the robustness of the different approaches when they
encounter differing conditions for training and testing. As for TIMIT, the evaluation is
performed over 80 keywords randomly selected from the corpus transcription. For each
keyword k, the evaluation was performed over a setX+k , containing between 1 and 20 positive
sequences, and a X−k , containing 20 randomly selected negative sequences. This setup also
represents an unbalanced problem, with 27% of the sequences being labeled as positive.

Table 11.3 reports the average AUC results of the 80 test keywords, for different models
trained on the TIMIT training set and evaluated on the si_tr_s subset of WSJ. Overall,
the results show that the differences between the TIMIT training conditions and the WSJ test
conditions affect the performance of all models. However, the measured performance still
yields acceptable performance in all cases (AUC of 0.868 in the worst case). Comparing
the individual model performance, the WSJ results confirm the conclusions of TIMIT
experiments and the discriminative spotters outperform the HMM-based alternatives. For the
HMM models, HMM/Ratio outperforms HMM/Viterbi as in the TIMIT experiments. For the
discriminative spotters, Discriminative/GMM outperforms Discriminative/Hier, which was
not the case over TIMIT. Since these two models only differ in the frame based classifier
used as the feature function φ5, this result certainly indicates that the hierarchical frame
based classifier on which Discriminative/Hier relies is less robust to the acoustic condition
changes than the GMM alternative. As with TIMIT, we checked whether the differences
observed on the whole set could be due to a few keywords. The Wilcoxon test rejected this
hypothesis at the 90% confidence level, for the four tests comparing Discriminative/GMM
and Discriminative/Hier with HMM/Viterbi and HMM/Hier.

We further compared the best discriminative spotter, Discriminative/GMM, and the best
HMM spotter HMM/Ratio over each keyword. These results are summarized in Table 11.4.
Out of the 80 keywords, the discriminative model outperforms the HMM for 50 keywords,
the HMM outperforms the discriminative model for 20 keywords and both models yield the
same results for 10 keywords. As with the TIMIT experiments, the discriminative model
is shown to be especially advantageous for short keywords, with five phonemes or less
(e.g. Adams, kings, serving).

Overall, the experiments over both WSJ and TIMIT highlight the advantage of our
discriminative learning method.

11.5 Conclusions

This chapter introduced a discriminative method for the keyword spotting problem. In this
task, the model receives a keyword and a spoken utterance as input and should decide whether
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Table 11.4 The distribution of the 80 keywords among the models which better spotted them.
Each row in the table represents the keywords for which the model written at the beginning
of the row received the highest area under the ROC curve. The models were trained on the
TIMIT training set but evaluated on the si_tr_s subset of WSJ

Best model Keywords

Discriminative/Hier Adams additions Allen Amerongen apiece buses Bushby Colombians
consistently cracked dictate drop fantasy fills gross Higa historic
implied interact kings list lobby lucrative measures Melbourne
millions Munich nightly observance owning plus proudly queasy
regency retooling Rubin scramble Seidler serving significance sluggish
strengthening Sutton’s tariffs Timberland today truths understands
withhold Witter’s (50 keywords)

HMM/Ratio artificially Colorado elements Fulton itinerary longer lunchroom
merchant mission multilateral narrowed outlets Owens piper replaced
reward sabotaged shards spurt therefore (20 keywords)

No differences aftershocks Americas farms Flamson hammer homosexual philosophi-
cally purchasers sinking steel-makers (10 keywords)

the keyword is uttered in the utterance. Keyword spotting corresponds to an unbalanced
detection problem, since, in standard setups, most tested utterances do not contain the
targeted keyword. In that unbalanced context, the AUC is generally used for evaluation.
This work proposed a learning algorithm, which aims at maximizing the AUC over a set
of training spotting problems. Our strategy is based on a large margin formulation of the
task, and relies on an efficient iterative training procedure. The resulting model contrasts
with standard approaches based on HMMs, for which the training procedure does not rely
on a loss directly related to the spotting task. Compared with such alternatives, our model is
shown to yield significant improvements over various spotting problems on the TIMIT and
the WSJ corpus. For instance, the best HMM configuration over TIMIT reaches an AUC of
0.953, compared with an AUC of 0.996 for the best discriminative spotter.

Several potential directions of research can be identified from this work. In its current
configuration, our keyword spotter relies on the output of a pre-trained frame based phoneme
classifier. It would be of great interest to learn the frame based classifier and the keyword
spotter jointly, so that all model parameters are selected to maximize the performance on the
final spotting task.

Also, our work currently represents keywords as sequence of phonemes, without consid-
ering the neighboring context. Possible improvement might result from the use of phonemes
in context, such as triphones. We hence plan to investigate the use of triphones in a
discriminative framework, and to compare the resulting model with triphone-based HMMs.
More generally, our model parameterization offers greater flexibility to incorporate new
features compared with probabilistic approaches such as HMMs. Therefore, in addition to
triphones, features extracted from the speaker identity, the channel characteristics or the
linguistic context could possibly be included to improve performance.
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Kernel-based Text-independent
Speaker Verification

Johnny Mariéthoz, Samy Bengio and Yves Grandvalet

The goal of a person authentication system is to certify/attest the claimed identity of a user.
When this authentication is based on the voice of the user, without respect to what the user
exactly said, the system is called a text-independent speaker verification system.

Speaker verification systems are increasingly often used to secure personal information,
particularly for mobile phone based applications. Furthermore, text-independent versions
of speaker verification systems are most used for their simplicity, as they do not require
complex speech recognition modules. The most common approach to this task is based
on Gaussian Mixture Models (GMMs) (Reynolds et al. 2000), which do not take into
account any temporal information. GMMs have been intensively used thanks to their good
performance, especially with the use of the Maximum a posteriori (MAP) (Gauvain and
Lee 1994) adaptation algorithm. This approach is based on the density estimation of an
impostor data distribution, followed by its adaptation to a specific client data set. Note that
the estimation of these densities is not the final goal of speaker verification systems, which is
rather to discriminate the client and impostor classes; hence discriminative approaches might
appear good candidates for this task as well.

As a matter of fact, Support Vector Machine (SVM) based systems have been the subject
of several recent publications in the speaker verification community, in which they obtain
performance similar to or even better than GMMs on several text-independent speaker
verification tasks. In order to use SVMs or any other discriminant approaches for speaker
verification, several modifications of the classical techniques need to be performed. The
purpose of this chapter is to present an overview of discriminant approaches that have
been used successfully for the task of text-independent speaker verification, to analyze their
differences from and their similarities to each other and to classical generative approaches

Au tomatic Speech and Speaker R ecognition: Large Margin and Ker n el Methods Edited by Joseph Keshet 
and Samy Bengio © 2009 John Wiley & Sons, Ltd. ISBN: 978-0-470-69683-5
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based on GMMs. An open-source version of the C++ source code used to performed all
experiments described in this chapter can be found at http://speaker.abracadoudou.com.

12.1 Introduction

Person authentication systems are in general designed in order to let genuine clients
access a given service while preventing impostors’ access. This can be seen as a two-class
classification problem suitable for machine learning approaches.

A number of specificities make speaker verification different from a standard binary
classification problem. First, the input data consists of sentences whose lengths depend on its
phonetic content and the speaking rate of the underlying speaker.

Second, only few client training examples are available: in most real applications, it is not
possible to ask a client to speak during several hours or days in order to capture the entire
variability of his/her voice. There are typically between one and three utterances for each
client.

Third, the impostor distribution is not known and not even well defined: we have no idea of
what an impostor is in a ‘real’ application. In order to simulate impostor accesses, one usually
considers other speakers in the database. This ignorance is somewhat remedied by evaluating
the models with impostor identities that are not available when creating the models. This
incidentally means that plenty of impostor accesses are usually available, often more than
1000 times the number of client accesses, which makes the problem highly unbalanced.

The distribution of impostors being only loosely defined, the prior probability of each class
is unknown, and the cost of each type of error is usually not known beforehand. Thus, one
usually selects a model that gives reasonable performance for several possible cost trade-offs.

Finally, the recording conditions change over time. The speaker can be located in several
kinds of place: office, street, train station, etc. The device used to perform the authentication
can also change between authentication attempts: land line phone, mobile phone, laptop
microphone, etc.

That being said, the problem of accepting or rejecting someone’s identity claim can be
formally stated as a binary classification task. Let S be a set of clients and si ∈ S be the ith
client of that set. We look for a discriminant function f (·; ϑ i ) and a decision threshold �
such that

f (x̄; ϑ i ) > � (12.1)

if and only if sentence x̄ was pronounced by speaker si .
The parametersϑ i are typically determined by optimizing an empirical criterion computed

on a set of Li sentences, called either the training or the learning set Li = {(x̄l, yl)}Lil=1,
where x̄l ∈ R

d×Tl is an input waveform sequence encoded as Tl d-dimensional frames, and
yl ∈ {−1, 1} is the corresponding target, where 1 stands for a true client sequence and −1
for an impostor access. The search space is defined as the set of functions f : Rd×Tl �→ R

parameterized by ϑ i , and ϑ i is identified by minimizing the mean loss on the training set,
where the loss �(·) returns low values when f (x̄; ϑ i ) is near y and high values otherwise:

ϑ i = arg min
θ

∑
(x̄,y)∈Li

�(f (x̄; θ), y).
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Note that the overall goal is not to obtain zero error on Li but rather on unseen examples
drawn from the same probability distribution. This objective is monitored by measuring the
classification performance on an independent test set Ti , in order to provide an unbiased
estimate of performance on the population.

A standard taxonomy of machine learning algorithms sets apart discriminant models,
which directly estimate the function f (·; ϑ i ), from generative models, where f (·; ϑ i ) is
defined through the estimation of the conditional distribution of sequences knowing the
speaker. We briefly present hereafter the classical generative approach that encompasses the
very popular GMM, which will provide a baseline in the experimental section. All the other
methods presented in this chapter are kernel-based systems that belong to the discriminative
approach.

12.2 Generative Approaches

The state-of-the-art generative approaches for speaker verification use atypical models in the
sense that they do not model the joint distribution of inputs and outputs. This is due to the fact
that we have no clue of what the prior probability of having client si speaking should be, since
the distribution of impostors is only loosely defined and the proportion of client accesses in
the training set may not be representative of the proportion in future accesses. Although the
model is not complete, a decision function is computed using the rationale described below.

12.2.1 Rationale

The system has to decide whether a sentence x̄ was pronounced by speaker si or by any other
person s0. It should accept a claimed speaker as a client if and only if:

P(si |x̄) > αiP (s0|x̄), (12.2)

where αi is a trade-off parameter that accounts for the loss of false acceptance of an impostor
access versus false rejection of a genuine client access.

Using Bayes’ theorem, we rewrite Equation (12.2) as follows:

p(x̄|si )
p(x̄|s0) > αi

P (s0)

P (si )
=�i =�, (12.3)

where�i is proportional to the ratio of the prior probabilities of being or not being the client.
This ratio being unknown,�i is replaced by a client independent decision threshold�. This
corresponds to having different (unknown) settings for the trade-off parameters αi .

The left ratio in Equation (12.3) plays the role of f (x̄; ϑ i ) in Equation (12.1), where the
set of parameters ϑ i is decomposed as follows:

f (x̄; ϑ i )= p(x̄|si , θ i )
p(x̄|s0, θ0)

,

with ϑ i = {θ i , θ0}. The loss function used to estimate θ0 is the negative log-likelihood

θ0 = arg min
θ

∑
(x̄,y)∈L−i

− log p(x̄|s0, θ ),



198 AUTOMATIC SPEECH AND SPEAKER RECOGNITION

where L−i is the subset of pairs (x̄, y) in the learning set Li for which y =−1. As generally
few positive examples are available, the loss function used to estimate θ i is based on a MAP
adaptation scheme (Gauvain and Lee 1994) and can be written as follows:

θ i = arg min
θ

∑
(x̄,y)∈L+i

− log(p(x̄|si , θ )p(θ ))

where L+i is the subset of pairs (x̄, y) in Li for which y = 1. This MAP approach puts some
prior on θ to constrain these parameters to some reasonable values. In practice, they are
constrained to be near θ0, which represents reasonable parameters for any unknown person.
See for instance Reynolds et al. (2000) for a practical implementation.

12.2.2 Gaussian Mixture Models

State-of-the-art systems compute the density of a sentence x̄ by a rough estimate that assumes
independence of the T frames that encode x̄. The density of the frames themselves is
assumed to be independent of the sequence length, and is estimated by a GMM with diagonal
covariance matrices, as follows:

p(x̄|s, θ )= P(T )p(x̄|T , s, θ )

= P(T )
T∏
t=1

p(xt |T , s, θ )

= P(T )
T∏
t=1

p(xt |s, θ )

= P(T )
T∏
t=1

M∑
m=1

πmN (xt |µm, σm), (12.4)

where P(T ) is the probability distribution1 of the length of sequence x̄, xt is the t th
frame of x̄, and M is the number of mixture components. The parameters θ comprise the
means {µm}Mm=1, standard deviations {σm}Mm=1 and mixing weights {πm}Mm=1 for all Gaussian
components. The Gaussian density is defined as follows:

N (x|µ, σ )= 1

(2π)d/2|	| exp

(
−1

2
(x− µ)T	−2(x− µ)

)
,

where d is the dimension of x,	 is the diagonal matrix with diagonal elements�ii = σi , and
|	| denotes the determinant of 	.

As stated in the previous section, we first train an impostor model p(x̄|s0, θ0), called
world model or universal background model when it is common to all speakers si . For this
purpose, we use the expectation maximization (EM) algorithm to maximize the likelihood
of the negative examples in the training set. Note that in order to obtain state-of-the-art
performance, the variances of all Gaussian components are constrained to be higher than

1Under the reasonable assumption that the distributions of sentence length are identical for each speaker, this
distribution does not play any discriminating role and can be left unspecified.
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some threshold, normally selected on a separate development set. This process, often called
variance flooring (Melin et al. 1998), can be seen as a way to control the capacity of the
overall model.

For each client si , we use a variant of MAP adaptation (Reynolds et al. 2000) to estimate
a client model p(x̄|si, θ i ) that only departs partly from the world model p(x̄|s0, θ0). In this
setting, only the mean parameters of the world model are adapted to each client, using the
following update rule:

µim = τi,m µ̂im + (1− τi,m)µ0
m,

where µ0
m is the vector of means of Gaussian m of the world model, µ̂im is the corresponding

vector estimated by maximum likelihood on the sequences available for client si and τi is the
adaptation factor that represents the faith we have in the client data. The latter is defined as
follows (Reynolds et al. 2000):

τi,m = ni,m

ni,m + r (12.5)

where ni,m is the effective number of frames used to compute µ̂im, that is, the sum of
memberships to componentm for all the frames of the training sequence(s) uttered by client
si (see Section 12.5.2 for details). The MAP relevant factor r is chosen by cross-validation.

Finally, when all GMMs have been estimated, one can instantiate Equation (12.3) to take
a decision for a given access as follows:

1

T

T∑
t=1

log

∑M
m=1 πm N (xt ; µim, σm)∑M
m=1 πm N (xt ; µ0

m, σm)
> log�,

where θ0 = {µ0
m, σm, πm}Mm=1 are the GMM parameters for the world model, and θ i =

{µim, σm, πm}Mm=1 are the GMM parameters for the client model. Note that 1/T does not
follow from Equation (12.3) and is an empirical normalization factor added to yield a
threshold� that is independent of the length of the sentence.

12.3 Discriminative Approaches

SVMs (Vapnik 2000) are now a standard tool in numerous applications of machine
learning, such as in text or vision (Joachims 2002; Pontil and Verri 1998). While GMM
is the mainstream generative model in speaker verification, SVMs are prevailing in the
discriminative approach. This section provides a basic description of SVMs that introduces
the kernel trick that relates feature expansions to kernels, on which we will focus in
Section 12.5.

12.3.1 Support Vector Machines

In the context of binary classification problems, the SVM decision function is defined by the
sign of

f (x; ϑ )= w ·�(x)+ b, (12.6)

where x is the current example, ϑ = {w, b} are the model parameters and�(·) is a mapping,
chosen ‘a priori’, that associates a possibly high dimensional feature to each input data.
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The SVM training problem consists in solving the following problem:
(w∗, b∗)= arg min

(w,b)

1

2
‖w‖2 + C

L∑
l=1

ξl

s.t. yl(w · xl + b)≥ 1− ξl ∀l
ξl ≥ 0 ∀l ,

(12.7)

whereL is the number of training examples, the target class label yl ∈ {−1, 1} corresponds to
xl , and C is a hyper-parameter that trades off the minimization of classification error (upper-
bounded by ξl) and the maximization of the margin, which provides generalization guarantees
(Vapnik 2000).

Solving Equation (12.7) leads to a discriminant function expressed as a linear combination
of training examples in the feature space �(·). We can thus rewrite Equation (12.6) as
follows:

f (x; ϑ )=
L∑
l=1

αlyl�(xl ) ·�(x)+ b,

where most training examples do not enter this combination (αl = 0); the training examples
for which αl �= 0 are called support vectors.

As the feature mapping �(·) only appears in dot products, the SVM solution can be
expressed as follows:

f (x; ϑ )=
L∑
l=1

αlylk(xl , x)+ b,

where k(·, ·) is the dot product�(·) ·�(·). More generally, k(·, ·) can be any kernel function
that fulfills the Mercer conditions (Burges 1998), which ensure that, for any possible training
set, the optimization problem is convex.

12.3.2 Kernels

A usual problem in machine learning is to extract features that are relevant for the
classification task. For SVMs, choosing the features and choosing the kernel are equivalent
problems, thanks to the so-called ‘kernel trick’ mentioned above. The latter also permits
to map xl into potentially infinite dimensional feature spaces by avoiding the explicit
computation of �(xl ); it also reduces the computational load for mappings in finite but high
dimension.

The two most well known kernels are the radial basis function (RBF) kernel:

k(xl, xl′)= exp

(−‖xl − xl′‖2

2σ 2

)
(12.8)

and the polynomial kernel:
k(xl, xl′)= (axl · xl′ + b)p, (12.9)

where σ, p, b, a are hyper-parameters that define the feature space.
Several SVM-based approaches have been proposed recently to tackle the speaker

verification problem (Campbell et al. 2006; Wan and Renals 2003). These approaches rely
on constructing an ad-hoc kernel for the problem at hand. These kernels will be presented
and evaluated after the following section, which describes the details of the experimental
methodology and the data that will be used to compare the various methods.
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Figure 12.1 Split of the speaker population into three subsets, with the final decomposition
in learning and test sets.

12.4 Benchmarking Methodology

In this section, we describe the methodology and the data used in all the experiments reported
in this chapter. We first present the data splitting strategy that is used to imitate a realistic use
of speaker verification systems. Then, we discuss the measures evaluating the performances
of learning algorithms. Finally, we detail the database used to benchmark these algorithms,
and the pre-processing that builds sequences of frames from waveform signals.

12.4.1 Data Splitting for Speaker Verification

A speaker verification problem is not a standard classification problem, since the objective
is not to certify accesses from a pre-defined set of clients. Instead, we want to be able to
authenticate new clients when they subscribe to the service, that is, we want to learn how to
build new classifiers on the fly. Hence, a speaker verification system is evaluated by its ability
to produce new classifiers with small test error. This is emulated by the data splitting process
depicted in Figure 12.1.

The root level gathers the population of speakers, which is split into three sub-populations,
defined by their role in building classifiers: the development set D, the world set W and the
evaluation set E . All accesses from the speakers of W will be used as the set of negative
examples L−i for training the models responsible for authenticating client si , where si may
belong either to the development set D or to the evaluation set E . The sets D and E are
further split into clients (respectively D+ and E+) and impostors (respectively D− and E−)
at the second level of the tree. The clients and the test impostors hence differ between the
development and the evaluation sets.

The impostor accesses in D− and E− form the set of negative test examples T −i , that
is, ‘attempt data’ from out-of-training impostors claiming identity si , where si belongs
respectively to D+ and E+. Finally, at the third level of the tree, the accesses of client si are
split to form the positive examples of the training set L+i (also known as the ‘enrollment data’,
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usually a single access), and the set of positive ‘attempt data’ T +i that play the role of out-of-
training client accesses requiring authentication.

To summarize, the development set D is used jointly with W to train models and select
their various hyper-parameters (such as the number of Gaussians, the MAP adaptation factor,
kernel parameters, etc.). For each hyper-parameter, we define a range of possible values, and
for each value, each client model is trained using the enrollment data L+i and the world data
L−i , before being evaluated with the positive and negative attempt data T +i and T −i . We
then select the value of the hyper-parameters that optimizes a given performance measure
(the equal error rate described below) on {T +i ∪ T −i }. Finally, the evaluation set E is used to
train new client models using these hyper-parameters, and to measure the performance of the
system on these new clients.

12.4.2 Performance Measures

The classification error rate is the most common performance measure in the machine
learning literature, but it is not well suited to the type of problems encountered in speaker
verification, where class priors are unknown and misclassification losses are unbalanced.
Hence, a weighted version of the misclassification rate is used, where one distinguishes two
kinds of error: false rejection (FR), which consists in rejecting a genuine client, and false
acceptance (FA), which consists in accepting an impostor. All the measures used in this
chapter are based on the corresponding error rates: the false acceptance rate (FAR) is the
number of FAs divided by the number of client accesses, and the false rejection rate (FRR)
is the number of FRs divided by the number of impostor accesses.

As stated in the previous section, in practice, we aim at building a single system that is
able to take decisions for all future users. The performance is measured globally, on the set
of speakers of the evaluation set, by averaging the performance over all trials independently
of the claimed identity.

In the speaker verification literature, a point often overlooked is that most of the results
are reported with ‘a posteriori’ measures, in the sense that the decision threshold � in
Equation (12.1) is selected such that it optimizes some criterion on the evaluation set. We
believe that this is unfortunate, and, in order to obtain unbiased results, we will use ‘a priori’
measures, where the decision threshold� is selected on a development set, before seeing the
evaluation set, and then applied to the evaluation data.

Common a posteriori measures include the equal error rate (EER), where the threshold
� is chosen such that (FAR= FRR), and the detection error trade-off (DET) curve (Martin
et al. 1997), which depicts FRR as a function of FAR when � varies. Note that the DET
curve is a nonlinear transformation of the receiver operating characteristic (ROC) curve
(Van Trees 1968). The nonlinearity is in fact a normal deviate, coming from the hypothesis
that the scores of client accesses and impostor accesses follow a Gaussian distribution. These
measures are perfectly legitimate for exploratory analysis or for tuning hyper-parameters
on the development set and they are used for this purpose here. To avoid confusion with
proper test results, we will only report DET curves computed on the development set.
For test performance, we will use a priori measures: the half total error rate (HTER=
1
2 (FAR(�)+ FRR(�))) and the expected performance curve (EPC) (Bengio et al. 2005),
which depicts the evaluation set HTER as a function of a trade-off parameter α. The latter
defines a decision threshold, computed on the development set, by minimizing the following
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convex combination of development FAR and FRR:

�∗ = arg min
�
(α · FAR(�)+ (1− α) · FRR(�)). (12.10)

We will provide confidence intervals around HTER and EPC. In this chapter, we report
confidence intervals computed at the 5% significance level, using an adapted version of the
standard proportion test (Bengio and Mariéthoz 2004).

12.4.3 NIST Data

The NIST database is a subset of the database that was used for the NIST 2005 and
2006 Speaker Recognition Evaluation, which comes from the second release of the cellular
switchboard corpus (Switchboard Cellular – Part 2) of the Linguistic Data Consortium. This
data was used as development and evaluation sets while the training (negative) examples
come from previous NIST campaigns. For both development and evaluation clients, there
are about 2 minutes of telephone speech available to train the models and each test access
was less than 1 minute long. Only male speakers were used. The development population
consisted of 264 speakers, while the evaluation set contained 349 speakers. Two hundred
and nineteen different records were used as negative examples for the discriminant models.
The total number of accesses in the development population is 13 596 and 22 131 for the
evaluation set population with a proportion of 10% of true target accesses.

12.4.4 Pre-processing

To extract input features, the original waveforms are sampled every 10 ms with a window size
of 20 ms. Each sentence is parameterized using 24 triangular band-pass filters with a DCT
transformation of order 16, complemented by their first derivative (delta) and the 10th second
derivative (delta-delta), the log-energy, the delta-log-energy and delta-delta-log-energy, for a
total of 51 coefficients. The NIST database being telephone-based, the signal is band-pass
filtered between 300 and 3400 Hz.

A simple silence detector, based on a two-component GMM, is used to remove all silence
frames. The model is first learned on a random recording with land line microphone and
adapted for each new sequence using the MAP adaptation algorithm. The sequences are then
normalized in order to have zero mean and unit variance on each feature.

While the log-energy is important in order to remove the silence frames, it is known to be
inappropriate to discriminate between clients and impostors. This feature is thus eliminated
after silence removal, while its first derivative is kept. Hence, the speaker verification models
are trained with 50 (51− 1) features.

12.5 Kernels for Speaker Verification

One particularity of speaker verification is that patterns are sequences. An SVM based
classification thus requires a kernel handling variable size sequence. Most solutions proposed
in the literature use a procedure that converts the sequences into fixed size vectors that are
processed by a linear SVM. Other sequence kernels allow embeddings in infinite-dimensional
feature spaces (Mariéthoz and Bengio 2007). However, compared with the mainstream
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approach, this type of kernel is computationally too demanding for long sequences. It will
not be applied here, since the NIST database contains long sequences.

In the following we describe several approaches using sequence kernels. The most
promising are then compared in Section 12.8.

12.5.1 Mean Operator Sequence Kernels

For kernel methods, a simple approach to tackling variable length sequences considers the
following kernel between two sequences:

K(x̄i, x̄j )= 1

TiTj

Ti∑
t=1

Tj∑
u=1

k(xti, xuj ), (12.11)

where we denote by K(·, ·) a sequence kernel, x̄i is a sequence of size Ti and xti is a frame
of x̄i . We thus apply a frame based kernel k(·, ·) to all possible pairs of frames coming from
the two input sequences x̄i and x̄j .

As the kernel K represents the average similarity between all possible pairs of frames, it
will be referred to as the mean operator sequence kernel. This kind of kernel has been applied
successfully in other domains such as object recognition (Boughorbel et al. 2004). Provided
that k(·, ·) is positive-definite, the resulting kernelK(·, ·) is also positive-definite.

The sequences in the NIST database typically consist of several thousands of frames,
hence the double summation in Equation (12.11) is very costly. As the number of operations
for each sequence kernel evaluation is proportional to the product of sequence lengths, such
a computation typically requires the order of a million operations. We thus will consider
factorizable kernels k(·, ·), such that the mean operator sequence kernel Equation (12.11)
can be expressed as follows:

K(x̄i , x̄j )= 1

TiTj

Ti∑
t=1

Tj∑
u=1

φ(xti ) · φ(xuj )

=
[

1

Ti

Ti∑
t=1

φ(xti )
]
·
[

1

Tj

Tj∑
u=1

φ(xuj )
]
. (12.12)

When the dimension of the feature space is not too large, computing the dot product explicitly
is not too demanding, and replacing the double summation by two single ones may result in
a significant reduction of computing time.

Explicit polynomial expansions have been used in Campbell (2002), Campbell et al.
(2006) and Wan and Renals (2003). In practice, the average feature vectors within brackets
in Equation (12.12) are used as input to a linear SVM. The generalized linear discriminant
sequence (GLDS) kernel of Campbell departs slightly from a raw polynomial expansion, by
using a normalization in the feature space:

K(x̄i , x̄j )= 1

TiTj
�(x̄i )−1�(x̄j ), (12.13)
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where  defines a metric in the feature space. Typically, this is a diagonal approximation of
the Mahalanobis metric, that is,  is a diagonal matrix whose diagonal elements γk are the
empirical variances2 for each feature, computed over the training data.

The polynomial expansion sends d-dimensional frames to a feature space of dimension
(d + p)!/d!p! − 1, where p is the degree of the polynomial. With our 50 input features, and
for a polynomial of degree p = 3, the dimension of the feature space is 23 425. For higher
polynomial degrees and for other feature spaces of higher dimension, the computational
advantage of the decomposition of Equation (12.12) disappears, and it is better to use
explicit kernel in the form of Equation (12.11). We empirically show below that, for the
usual representation of frames described in Section 12.4.4, the GLDS normalization in
Equation (12.13) is embedded in the standard polynomial kernel.

Let us define k(xi , xj ) as a polynomial kernel of the form (xi · xj + 1)p, where p is
the degree of the polynomial. After removing the constant term, the explicit expansion of
this standard polynomial kernel involves (d + p)!/d!p! − 1 terms that can be indexed by
r= (r1, r2, . . . , rd), such that

φr(x)=√crx
r1
1 x

r2
2 . . . x

rd
d ,

where
d∑
i=1

ri = p, ri ≥ 0, and cr = p!
r1!r2! . . . rd+1! .

In the above equations,
√
cr has exactly the same role as the 1/

√
γk coefficients on

the diagonal of −1/2 in Equation (12.13). In Figure 12.2, we compare these coefficient
values, where the normalization factors 1/

√
γk are estimated on two real datasets, after a

polynomial expansion of degree 3. The values are very similar, with highs and lows on the
same monomial. In fact, the performance of the two approaches obtained on the development
set of NIST are about the same, as shown by the DET curves given in Figure 12.3.

Even if this approach is simple and easy to use, the accuracy can be improved by
introducing priors. In fact, to train a client model very few positive examples are available.
Thus, if we can put pieces of information collected on a large set of speakers into the SVM
model, as done for the GMM system, we can expect an improvement. One can for example
try to include the world model in the kernel function as proposed in the next section.

12.5.2 Fisher Kernels

Jaakkola and Haussler (1998) proposed a principled means for building kernel functions
from generative models: the Fisher kernel. In this framework, which has been applied to
speaker verification by Wan and Renals (2005a), the generative model is used to specify the
similarity between pairs of examples, instead of the usual practice where it is used to provide
a likelihood score, which measures how well the example fits the model. Put another way, a
Fisher kernel utilizes a generative model to measure the differences in the generative process
between pairs of examples instead of the differences in posterior probabilities.

The key ingredient of the Fisher kernel is the vector of Fisher scores:

ux̄ =∇θ log p(x̄|θ ),
2The constant feature is removed from the feature space prior to normalization.
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Figure 12.2 Coefficient values of polynomial terms, as computed on two different datasets
(Banca and PolyVar), compared with the ck polynomial coefficients.

where θ denotes here the parameters of the generative model, and ∇θ is the gradient
with respect to θ . The Fisher scores quantify how much each parameter contributes to the
generation of example x̄.

The Fisher kernel itself is given by

K(x̄i , x̄j )= ux̄i
T I(θ )−1ux̄j , (12.14)

where I(θ ) is the Fisher information matrix at θ , that is, the covariance matrix of Fisher
scores:

I(θ )= Ex̄(ux̄ux̄
T ), (12.15)

where we have used that Ex̄(ux̄)= 0. The Fisher kernel of Equation (12.14) can thus be
interpreted as a Mahalanobis distance between two Fisher scores.

Another interpretation of the Fisher kernel is based on the representation of a parametric
class of generative models as a Riemannian manifold (Jaakkola and Haussler 1998). Here, the
vector of Fisher scores defines a tangent direction at a given location, that is, at a given model
parameterized by θ . The Fisher information matrix is the local metric at this given point,
which defines the distance between the current model p(x̄|θ ) and its neighbors p(x̄|θ + δ).
The (squared) distance d(θ , θ + δ)= 1

2δ
T Iδ approximates the Kullback–Leibler divergence

between the two models. Note that, unlike the Kullback–Leibler divergence, the Fisher kernel
of Equation (12.14) is symmetric. It is also positive-definite since the Fisher information
matrix I(θ ) is obviously positive-definite at θ .
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Figure 12.3 Detection error trade-off curves on the development set of the NIST database
comparing the explicit polynomial expansion (noted as ‘GLDS kernel p = 3, in the legend),
and the principled polynomial kernel (noted ‘Polynomial kernel p = 3’).

Fisher Kernels for GMMs

In the MAP framework, the family of generative models we consider is the set of
Gaussian mixtures of Equation (12.4) that differ in their mean vectors µm. Hence, a relevant
dissimilarity between examples will be measured by the Fisher scores computed on these
vectors: ux̄ = (∇Tµ1

log p(x̄|θ ), . . . , ∇TµM log p(x̄|θ ))T , where

∇µm log p(x̄|θ )=
T∑
t=1

∇µm log
M∑
m′=1

πm′N (xt |µm′ , σm′)

=
T∑
t=1

P(m|xt )∇µm
(
−1

2
(xt − µm)T	−2

m (xt − µm)
)

=
T∑
t=1

P(m|xt )	−2
m (xt − µm). (12.16)

Using the definition of Equation (12.15), the Fisher information matrix can be expressed
block-wise, with M ×M blocks of size d × d:

I= (Im,m′)1≤m≤M,1≤m′≤M,
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with

Im,m′ = Ex̄

[ T∑
t=1

T∑
u=1

P(m|xt )P (m′|xu)	−2
m (xt − µm)(xu − µm′)T	−2

m′

]
. (12.17)

There is no simple analytical expression of this expectation, due, among other things, to the
product P(m|xt )P (m′|xu). Hence, several options are possible:

1. Ignore the information matrix in the computation of the Fisher kernel of Equation
(12.14). This option, mentioned by Jaakkola and Haussler as a simpler suitable
substitute, is often used in the application of Fisher kernels.

2. Approximate the expectation in the definition of Fisher information by Monte Carlo
sampling.

3. Approximate the product P(m|xt )P (m′|xu) by a simpler expression in Equation
(12.17). For example, if we assume that the considered GMM performs hard assign-
ments of frames to mixture components, then P(m|xt )P (m′|xu) is null ifm �=m′. Fur-
thermore, this product is also null form=m′ when xt or xu is generated from another
component of the mixture distribution, otherwise, we have P(m|xt )P (m′|xu)= 1.
Let gm denote the function such that gm(x, y)=	−2

m (x− µm)(y− µm′)T	−2
m′ if

P(m|x)= P(m|y)= 1 and gm(x, y)= 0 otherwise. With this notation and the above
approximations, Equation (12.17) reads

Im,m′ ' 0 if m �=m′

Im,m ' Ex̄

[ T∑
t=1

T∑
u=1

gm(xt , xu)
]

' Ex[gm(x, x)]ET [T ]
'	−2

m ET [T ].
The unknown constant ET [T ] is not relevant and can been dropped from the
implementation of this approximation to the Fisher kernel.

We now introduce some definitions with the following scenario. Suppose that we
trained the GMM world model on a large set of speakers, resulting in parameters θ0 =
{µ0
m, σm, πm}Mm=1. We then use this GMM as an initial guess for the model for client si .

If, as in the MAP framework, the client model differs from the world model in the mean
vector only, then, after one EM update, the training sequence x̄i will result in the following
estimates:

µim =
1

ni,m

Ti∑
t=1

xtiP (m|xti ),

where ni,m =
Ti∑
t=1

P(m|xti ).

Hence, ni,m is the effective number of frames used to compute µim, that is, the sum of the
membership of all frames of x̄i to component m. These definitions of µim and ni,m are
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convenient for expressing Fisher scores, when the reference generative model is the world
model parameterized by θ0:

∇µm log p(x̄i |θ )|θ=θ0 = 	−2
m

Ti∑
t=1

P(m|xti )(xti − µm)

= ni,m	−2
m (µim − µ0

m). (12.18)

With the approximations of the Fisher information discussed above, the kernel is
expressed as:

1. For the option where the Fisher information matrix is ignored:

K(x̄i , x̄j )= uTx̄iux̄j

=
M∑
m=1

(ni,m	
−2
m (µim − µ0

m))
T (nj,m	

−2
m (µ

j
m − µ0

m)).

2. For the option where the Fisher information matrix is approximated by Monte
Carlo integration: here, for computational reasons, we only consider a block-diagonal
approximation Î, where

Î= (̂Im,m′ )1≤m≤M,1≤m′≤M,
with

Îm,m′ = 0 if m �=m′

Îm,m = 1

n

∑
t

P (m|xt )2	−2
m (xt − µ0

m)(x
t − µ0

m)
T	−2

m ,

where n is the number of random draws of xt generated from the world model.

We then have:

K(x̄i , x̄j )=
M∑
m=1

(ni,m	
−2
m (µim − µ0

m))
T Î−1
m,m(nj,m	

−2
m (µ

j
m − µ0

m)).

3. For the option where the Fisher information matrix is approximated analytically:

K(x̄i , x̄j )=
M∑
m=1

(ni,m	
−1
m (µim − µ0

m))
T (nj,m	

−1
m (µ

j
m − µ0

m)).

These three variants of the Fisher kernel are compared in Figure 12.4, which compares the
DET curves obtained on the development set of the NIST database. The three curves almost
overlap, confirming that ignoring the information matrix in the Fisher kernel is not harmful
in our setup.
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Table 12.1 Equal error rates (EERs) (the lower the better) on the development set of the NIST
database, comparing Fisher kernel (approximation 3) with the normalized Fisher kernel

Fisher Normalized Fisher

EER (%) 9.3 8.2
95% confidence ±0.9 ±0.8
# support vectors 37 32

12.5.3 Beyond Fisher Kernels

The previous experimental results confirm that the main component of the Fisher kernel is the
Fisher score. The latter is based on a probabilistic model viewed through the log-likelihood
function. We can depart from the original setup described above, by using other models
and/or score. Some alternative approaches have already been investigated, for example Wan
and Renals (2005b) use scores based on a log-likelihood ratio between the world model
and the adapted client model. We describe below a very simple modification of the scoring
function that brings noticeable improvements in performance.

(a) Normalized Fisher Scores

We saw in Section 12.2.2 that the scores used for classifying examples are normalized, in
order to counterbalance the exponential decrease of likelihoods with sequence lengths. Using
the normalized likelihood leads to the following Fisher-like kernel:

K(x̄i , x̄j )= 1

Ti Tj
uTx̄iux̄j

=
M∑
m=1

(
ni,m

Ti
	−2
m (µim − µ0

m)

)T(nj,m
Tj

	−2
m (µ

j
m − µ0

m)

)
.

Here also one may consider several options for approximating the Fisher information matrix,
but the results displayed in Figure 12.4 suggest it is not worth pursuing this further. Table 12.1
and Figure 12.5 compare empirically the Fisher kernel (approximation 3) with the normalized
Fisher kernel. Including a normalization seems to have a positive impact on the accuracy.
Thus other kinds of scores should be explored.

(b) GMM Supervector Linear Kernel

The Fisher kernel is a similarity based on the differences in the generation of examples. In
this matter, it is related to the GMM supervector linear kernel (GSLK) proposed by Campbell
et al. (2006).

The GSLK approximates the Kullback–Leibler divergence, which measures the dissim-
ilarity between two GMMs, each one being obtained by adapting the world model to one
example of the pair (x̄i , x̄j ). Hence, instead of looking at how a single generative process
differs for each example of the (x̄i , x̄j ) pair, GSLK looks at the difference between pairs of
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Figure 12.4 Detection error trade-off curves on the development set of the NIST database
comparing the three different approximations of the Fisher information matrix.

generative models. The GSLK is given by:

K(x̄i, x̄j )=
M∑
m=1

(
√
πm	

−1
m (τi,mµ

i
m + (1− τi,m)µ0

m))
T

· (√πm	−1
m (τj,mµ

j
m + (1− τj,m)µ0

m)),

where τi,m is the adaptation factor for the mixture component m adapted with sequence x̄i ,
as defined in Equation (12.5). The MAP relevant factor r is chosen by cross-validation, as in
GMM based text-independent speaker verification systems (Reynolds et al. 2000).

The Fisher kernel and GSLK are somewhat similar scalar products, with the most
noticeable difference being that the Fisher similarity is based on difference from the reference
µ0 whereas the GSLK kernel above is based on a convex combination of the observations
and the reference µ0 that has no obvious interpretation. Both are an approximation of the
Kullback–Leibler divergence as mentioned in Section 12.5.2. The difference is that GSLK
compares two adapted distributions whereas the Fisher kernel compares the world model and
the updated model using the access data.

Table 12.2 and Figure 12.6 compare empirically GSLK with the normalized Fisher kernel.
There is no significant difference between GSLK and the normalized Fisher kernel.
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Figure 12.5 Detection error trade-off curves on the development set of the NIST database
for Fisher kernel (approximation 3) and normalized Fisher kernel.

Table 12.2 Equal error reports (EERs) (the lower the better) on the development set of
the NIST database, comparing GMM supervector linear kernel (GSLK) and the normalized
Fisher kernel

GSLK Normalized Fisher

EER (%) 7.9 8.2
95% confidence ±0.8 ±0.8
# support vectors 34 32

12.6 Parameter Sharing

The text-independent speaker verification problem is actually a set of several binary
classification problems, one for each client of the system. Although few positive examples
are available for each client, the overall number of available positive examples may be
large. Hence, techniques that share information between classification problems should be
beneficial. We already mentioned such a technique: the MAP adaptation scheme that trains
a single world model on a common data set, and uses it as a prior distribution over the
parameters to train a GMM for each client. Here, the role of the world model is to bias
each client model towards a reference speaker model. This bias amounts to a soft sharing of
parameters.
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Figure 12.6 Detection error trade-off (DET) curves on the development set of the NIST
database for GMM supervector linear kernel (GSLK) and normalized Fisher kernel.

Additional parameter sharing techniques are now used in discriminant approaches. In the
following, we discuss one of them, the Nuisance Attribute Projection (NAP).

12.6.1 Nuisance Attribute Projection

The NAP approach (Solomonoff et al. 2004) looks for a linear subspace such that similar
accesses (that is, accesses coming from the same client or from the same channel, etc) are
near each other. In order to avoid finding an obvious bad solution, the dimension of the target
subspace is controlled by cross-validation. This transformation is learned on a large set of
clients (similarly to learning a generic GMM in the generative approach). After this step is
performed, a standard linear SVM is usually trained for each new client over the transformed
access data. This approach provided very good performance in recent NIST evaluations.

More specifically, assume each access sequence x̄ is mapped into a fixed-size feature
space through some transformation �(x̄) such as the one used in the GLDS kernel. Let
Wc be a proximity matrix encoding, for each pair of accesses (x̄i , x̄j ), that these sequences
were recorded over the same channel (Wc

i,j = 0) or not (Wc
i,j = 1). The NAP approach then

consists in finding a projection matrix P� such that

P� = arg min
P

∑
i,j

Wc
i,j‖P(�(x̄i )−�(x̄j ))‖2 (12.19)

among orthonormal projection matrices of a given rank. Hence P� minimizes the average
difference between accesses from differing channels, in the feature space. Similarly, a
second matrix Ws could encode the fact that two accesses come from the same speaker.
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A combination of this prior knowledge could be encoded as follows:

W= αWc − γWs, (12.20)

with α and γ hyper-parameters to tune, and P� found to minimize Equation (12.19) with W
instead of Wc.

As stated earlier, P� is then used to project each access�(x̄) into a feature subspace where,
for each client, a linear SVM is used to discriminate client and impostor accesses. As shown
in Table 12.3 and Figure 12.7, NAP brings significant improvement when combined with the
GSLK kernel. On the other hand, the number of support vectors also grows significantly.
This can be interpreted that now all accesses are in the same space and are independent of
the channel and thus more training impostors are good candidates.

Table 12.3 Equal error rates (EERs) (the lower the better) on the development set of the
NIST database, comparing a Support Vector Machine classifier with GMM supervector linear
kernel (GSLK) with and without Nuisance Attribute Projection (NAP) (polynomial kernel of
degree 3)

GSKL GSLK with NAP

EER (%) 7.9 5.8
95% confidence ±0.8 ±0.6
# support vectors 34 59

Although the approach has been shown to yield very good performance results, we believe
that there is still room for improvement, since P� is not selected using the criterion that is
directly related to the task. Minimizing the average squared distance between accesses of the
same client (or accesses of a different channel) is likely to help classification, but it would
also be relevant to do something about accesses from different clients, such as moving them
away.

12.6.2 Other Approaches

Another recent approach that goes in the same direction and that obtains state-of-the-art
performance similar to the NAP approach is the Bayesian Factor Analysis approach (Kenny
et al. 2005). In this case, one assumes that the mean vector of a client model is a linear
combination of a generic mean vector, the mean vector of the available training data for that
client and the mean vector of the particular channel used in this training data. Once again, the
linear combination parameters are trained on a large amount of access data, involving a large
number of clients. While this approach is nicely presented theoretically (and obtains very
good empirical performance), it does not try to find the optimal parameters of client models
and linear combination by taking into account the global cost function.

Another very promising line of research that has emerged in machine learning relates
to the general problem of learning a similarity metric (Chopra et al. 2005; Lebanon 2006;
Weinberger et al. 2005). In this setting, where the learning algorithm relies on the comparison
of two examples, one can set aside some training examples to actually learn what would be
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Figure 12.7 Detection error trade-off curves on the development set of the NIST database
with GMM supervector linear kernel (GSLK) with and without Nuisance Attribute Projection
(NAP).

a good metric to compare pairs of examples. Obviously, in the SVM world, this relates to
learning the kernel itself (Crammer et al. 2002; Lanckriet et al. 2004).

In the context of discriminant approaches to speaker verification, none of these techniques
has been tried, to the best of our knowledge. Using a large base of accesses for which one
knows the correct identity, one could for instance train a parametric similarity measure
that would assess whether two accesses are coming from the same person or not. That
could be done efficiently by stochastic gradient descent using a scheme similar to the so-
called Siamese neural network (Chopra et al. 2005) and a margin criterion with proximity
constraints.

12.7 Is the Margin Useful for This Problem?

The scarcity of positive training examples in speaker verification explains the great improve-
ments that pertain to parameter sharing techniques. In this section, we question whether this
specificity also hinders large margin methods to improve upon more simple approaches.

The K-Nearest Neighbors (KNN) algorithm (Duda and Hart 1973) is probably the simplest
and the best known non-parametric classifier. Instead of learning a decision boundary,
decisions are computed on-the-fly for each test access by using the k nearest labelled
sequences in the database as ‘experts,’ whose votes are aggregated to make up the decision
on the current access.
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Table 12.4 Equal error rates (ERRs) (the lower the better) on the development set of the
NIST database, comparing the Fisher normalized kernel with Nuisance Attribute Projection
(NAP) (250) for K-Nearest Neighbors (KNN) and Support Vector Machine (SVM)

SVM KNN

EER (%) 6.7 5.3
95% confidence ±0.7 ±0.7
# support vectors 47 –

In the weighted KNN (Dudani 1986) variant, the votes of the nearest neighbors are
weighted according to their distance to the query:

f (x̄j )=
k∑
i=1

yiwi, with wi =
1 if d(j, k)= d(j, 1),
d(j, k)− d(j, i)
d(j, k)− d(j, 1)

otherwise,
(12.21)

where the sum runs over the k neighbors of the query x̄j , yi ∈ {−1, 1} determines whether
the neighbor’s access is from a client (yi = 1) or an impostor (y1 =−1), and d(j, i) is the
distance from x̄j to its ith neighbor.

One can then use kernels to define distances, as follows:

d(i, j)=
√
K(x̄i, x̄i )− 2K(x̄i, x̄j )+K(x̄j , x̄j ), (12.22)

but it is often better to normalize the data also in the feature space so that they have unit
norm, as follows:

Knorm(x̄i , x̄j )= K(x̄i , x̄j )√
K(x̄i, x̄i )K(x̄j , x̄j )

, (12.23)

which leads to the final distance measure used in the experiments:

dnorm(i, j)=
√

2− 2
K(x̄i, x̄j )√

K(x̄i , x̄i)K(x̄j , x̄j )
. (12.24)

Table 12.4 and Figure 12.8 compare the normalized Fisher score with the NAP approach
followed by either an SVM or a KNN, and as can be seen the KNN approach yields
similar if not better performance than the SVM approach. Furthermore, the KNN has
several advantages with respect to SVMs: there is no training session and KNN can easily
approximate posterior probabilities and does not rely on potentially constraining Mercer
conditions to work. On the other hand, the test session might be longer as finding nearest
neighbors needs to be efficiently implemented.

12.8 Comparing all Methods

As a final experiment, we have compared all the proposed approaches and now report the
results on the evaluation set. Figure 12.9 compares a state-of-the-art diagonal GMM with an
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Figure 12.8 Detection error trade-off curves on the development set of the NIST database
comparing Fisher normalized kernel with Nuisance Attribute Projection (NAP) for K-Nearest
Neighbors (KNN) and Support Vector Machine (SVM).

SVM using a GSLK kernel with NAP, and also with a KNN based on the normalized Fisher
kernel with NAP.

In this experiment, the following set of hyper-parameters was tuned according to the EER
obtained on the development set:

• The number of neighbors K in the KNN approach was varied between 20 and 200,
with optimal value: 100.

• The size of P, the transformed space in NAP for the GSLK kernel, was varied between
40 and 250, with optimal value: 64.

• The size of P, the transformed space in NAP for the Fisher kernel, was varied between
40 and 400, with optimal value: 250.

• The number of Gaussians in the GMM used for the GSLK and Fisher kernel
approaches was varied between 100 and 500, with optimal value: 200.

• All other parameters of the state-of-the-art diagonal GMM baseline were taken from
previously published experiments.

The GMM yields the worst performance, probably partly because no channel compensa-
tion method is used (while the others use NAP). KNN and SVM performances do not differ
significantly, hence the margin does not appear to be at all necessary for speaker verification.
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Figure 12.9 Expected performance curve (the lower, the better) on the evaluation set of
the NIST database comparing Gaussian Mixture Model (GMM) with T-norm, Support
Vector Machine (SVM) with a GMM supervector linear kernel (GSLK) kernel and Nuisance
Attribute Projection (NAP), SVM Fisher normalized kernel with NAP and K-nearest
Neighbors (KNN) with a Fisher normalized kernel with NAP.

Table 12.5 Final results on the evaluation set of the NIST database

GMM SVM GSKL NAP KNN Normalized Fisher NAP

Half total error rate (%) 10.2 5.4 5.5
95% confidence ±0.7 ±0.5 ±0.5

GMM, Gaussian Mixture Model; SVM, Support Vector Machine; GSLK, GMM supervector linear kernel;
NAP, Nuisance Attribute Projection; KNN, K-Nearest Neighbors.

12.9 Conclusion

In this chapter, we have presented the task of text independent speaker verification. We have
shown that the traditional method to approach this task is through a generative approach
based on GMM.

We have then presented a discriminative framework for this task, and presented several
recent approaches in this framework, mainly based on SVM. We have presented various
kernels adapted to the task, including the GLDS, GSLK and Fisher kernels. While many of
the proposed kernels in the literature were proposed in some heuristic way, including the
GLDS and GSLK kernels, we have shown the relation between the principled polynomial
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kernel and the GLDS kernel, as well as the relation between the principled Fisher kernel and
the GSLK kernel. We have then shown that in order for SVMs to perform at a state-of-the-art
level, parameter sharing in one way or another was necessary. Approaches such as NAP or
Bayesian Factor Analysis were designed for that purpose and indeed helped SVMs to reach
better performance.

Finally, we have questioned the main purpose of using SVMs, which maximize the margin
in the feature space. We have tried instead a plain KNN approach, which yielded similar
performance. This simple experiment shows that future research should concentrate more on
better modelling of the distance measure than on maximizing the margin.

A drawback of the current approaches is that they consist in various blocks (feature
extraction, feature normalization, distance measure, etc) which were all trained using a
separate ad hoc criterion. Ultimately, a system that would train all these steps in a single
framework to optimize the final objective should perform better, but more research is
necessary to reach that goal.

In order to foster more research in this domain, an open-source version of the C++ source
code used to performed all experiments described in this chapter has been made available at
http://speaker.abracadoudou.com.
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Spectral Clustering for Speech
Separation

Francis R. Bach and Michael I. Jordan

Spectral clustering refers to a class of recent techniques which rely on the eigenstructure
of a similarity matrix to partition points into disjoint clusters, with points in the same
cluster having high similarity and points in different clusters having low similarity. In this
chapter, we introduce the main concepts and algorithms together with recent advances in
learning the similarity matrix from data. The techniques are illustrated on the blind one-
microphone speech separation problem, by casting the problem as one of segmentation of
the spectrogram.

13.1 Introduction

Clustering has many applications in machine learning, exploratory data analysis, computer
vision and speech processing. Many algorithms have been proposed for this task of grouping
data into several subsets that share some common structure (see, e.g., Hastie et al. (2001);
Mitchell (1997)). Two distinct approaches are very popular: (1) Linkage algorithms are based
on thresholding pairwise distances and are best suited for complex elongated structures, but
are very sensitive to noise in the data; (2) K-means algorithms, on the other hand, are very
robust to noise but are best suited for rounded linearly separable clusters. Spectral clustering
is aimed at bridging the gap between these approaches, providing a methodology for finding
elongated clusters while being more robust to noise than linkage algorithms.

Spectral clustering relies on the eigenstructure of a similarity matrix to partition points
into disjoint clusters, with points in the same cluster having high similarity and points in

Au tomatic Speech and Speaker R ecognition: Large Margin and Ker n el Methods Edited by Joseph Keshet 
and Samy Bengio © 2009 John Wiley & Sons, Ltd. ISBN: 978-0-470-69683-5
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different clusters having low similarity. As presented in Section 13.2, spectral clustering can
be cast as a relaxation of a hard combinatorial problem based on normalized cuts.

Most clustering techniques explicitly or implicitly assume a metric or a similarity
structure over the space of configurations, which is then used by clustering algorithms.
The success of such algorithms depends heavily on the choice of the metric, but this
choice is generally not treated as part of the learning problem. Thus, time-consuming
manual feature selection and weighting is often a necessary precursor to the use of spectral
methods.

Several recent papers have considered ways to alleviate this burden by incorporating prior
knowledge into the metric, either in the setting of K-means clustering (Bar-Hillel et al.
2003; Wagstaff et al. 2001; Xing et al. 2003) or spectral clustering (Kamvar et al. 2003;
Yu and Shi 2002). In this chapter, we consider a complementary approach, providing a
general framework for learning the similarity matrix for spectral clustering from examples.
We assume that we are given sample data with known partitions and are asked to build
similarity matrices that will lead to these partitions when spectral clustering is performed.
This problem is motivated by the availability of such datasets for at least two domains of
application: in vision and image segmentation, databases of hand-labeled segmented images
are now available (Martin et al. 2001), while for the blind separation of speech signals via
partitioning of the time-frequency plane (Brown and Cooke 1994), training examples can be
created by mixing previously captured signals.

Another important motivation for our work is the need to develop spectral clustering
methods that are robust to irrelevant features. Indeed, as we show in Section 13.4.5, the
performance of current spectral methods can degrade dramatically in the presence of such
irrelevant features. By using our learning algorithm to learn a diagonally-scaled Gaussian
kernel for generating the similarity matrix, we obtain an algorithm that is significantly more
robust.

Our work is based on a cost function that characterizes how close the eigenstructure of a
similarity matrix W is to a partition E. We derive this cost function in Section 13.2. As we
show in Section 13.2.5, minimizing this cost function with respect to the partition E leads to
a new clustering algorithm that takes the form of weightedK-means algorithms. Minimizing
them with respect to W yields a theoretical framework for learning the similarity matrix, as
we show in Section 13.3. Section 13.3.3 provides foundational material on the approximation
of the eigensubspace of a symmetric matrix that is needed for Section 13.4, which presents
learning algorithms for spectral clustering.

We highlight one other aspect of the problem here – the major computational challenge
involved in applying spectral methods to domains such as vision or speech separation.
Indeed, in image segmentation, the number of pixels in an image is usually greater than
hundreds of thousands, leading to similarity matrices of potential huge sizes, while, for
speech separation, four seconds of speech sampled at 5.5 kHz yields 22 000 samples and
thus a naive implementation would need to manipulate similarity matrices of dimension at
least 22 000× 22 000. Thus a major part of our effort to apply spectral clustering techniques
to speech separation has involved the design of numerical approximation schemes that exploit
the different time scales present in speech signals. In Section 13.4.4, we present numerical
techniques that are appropriate for generic clustering problems, while in Section 13.6.3, we
show how these techniques specialize to speech. The results presented in this chapter are
taken from Bach and Jordan (2006).
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13.2 Spectral Clustering and Normalized Cuts

In this section, we present our spectral clustering framework. Following Shi and Malik (2000)
and Gu et al. (2001), we derive the spectral relaxation through normalized cuts. Alternative
frameworks, based on Markov random walks (Meila and Shi 2002), on different definitions
of the normalized cut (Meila and Xu 2003), or on constrained optimization (Higham and
Kibble 2004) lead to similar spectral relaxations.

13.2.1 Similarity Matrices

Spectral clustering refers to a class of techniques for clustering that are based on pairwise
similarity relations among data points. Given a dataset I of P points in a space X, we assume
that we are given a P × P ‘similarity matrix’ W that measures the similarity between each
pair of points: Wpp′ is large when points indexed by p and p′ are preferably in the same
cluster, and is small otherwise. The goal of clustering is to organize the dataset into disjoint
subsets with high intra-cluster similarity and low inter-cluster similarity.

Throughout this chapter we always assume that the elements of W are non-negative
(W � 0) and that W is symmetric (W=W(). Moreover, we make the assumption that the
diagonal elements of W are strictly positive. In particular, contrary to most work on kernel
based algorithms, our theoretical framework makes no assumptions regarding the positive
semidefiniteness of the matrix (a symmetric matrix W is positive semidefinite if and only
if for all vectors u ∈ R

P , u(Wu � 0). If in fact the matrix is positive semidefinite this can
be exploited in the design of efficient approximation algorithms (see Section 13.4.4). But the
spectral clustering algorithms presented in this chapter are not limited to positive semidefinite
matrices. In particular, it differs from the usual assumption made in kernel methods. For
similar clustering approaches based on kernel methods, see Filippone et al. (2008), Bie and
Cristianini (2006) and Bach and Harchaoui (2008).

A classical similarity matrix for clustering in R
d is the diagonally-scaled Gaussian

similarity, defined between pairs of points (x, y) ∈R
d ×R

d as:

W(x, y)= exp(−(x− y)( Diag(a)(x− y)),

where a ∈R
d is a vector of positive parameters, and Diag(a) denotes the d × d diagonal

matrix with diagonal a. It is also very common to use such similarity matrices after
transformation to a set of ‘features,’ where each feature can depend on the entire dataset
(xi )i=1,...,P or a subset thereof (see, e.g., Shi and Malik 2000, for an example from
computational vision and see Section 13.5 of the current chapter for examples from speech
separation). In Figure 13.1, we present a toy example in two dimensions with the Gaussian
similarity.

In the context of graph partitioning where data points are vertices of an undirected graph
and Wij is defined to be 1 if there is an edge between i and j , and zero otherwise, W is often
referred to as an ‘affinity matrix’ (Chung 1997).

13.2.2 Normalized Cuts

We let V = {1, . . . , P } denote the index set of all data points. We wish to find R disjoint
clusters, A= (Ar)r∈{1,...,R}, where

⋃
r Ar = V , that optimize a certain cost function. In this
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Figure 13.1 Toy examples in two dimensions.

chapter, we consider theR-way normalized cut,C(A,W), defined as follows (Gu et al. 2001;
Shi and Malik 2000). For two subsets A, B of V , define the total weight between A and B as
W(A, B)=∑

i∈A
∑
j∈B Wij . Then the normalized cut is equal to

C(A,W)=
R∑
r=1

W(Ar, V \Ar)
W(Ar , V )

. (13.1)

Noting that W(Ar, V )=W(Ar, Ar)+W(Ar, V \Ar), we see that the normalized cut is
small if for all r , the weight between the rth cluster and the remaining data points is small
compared with the weight within that cluster. The normalized cut criterion thus penalizes
unbalanced partitions, while non-normalized criteria do not and often lead to trivial solutions
(e.g. a cluster with only one point) when applied to clustering. In addition to being more
immune to outliers, the normalized cut criterion and the ensuing spectral relaxations have a
simpler theoretical asymptotic behavior when the number of data points tends to infinity (von
Luxburg et al. 2005).

Let er be the indicator vector in R
P for the rth cluster, i.e. er ∈ {0, 1}P is such that er has

a non-zero component only for points in the rth cluster. Knowledge of E= (e1, . . . , eR) ∈
R
P×R is equivalent to knowledge ofA= (A1, . . . , AR) and, when referring to partitions, we

will use the two formulations interchangeably. A short calculation reveals that the normalized
cut is then equal to

C(E,W)=
R∑
r=1

e(r (D−W)er
e(r Der

, (13.2)

where D denotes the diagonal matrix whose ith diagonal element is the sum of the elements
in the ith row of W, i.e. D= Diag(W1), where 1 is defined as the vector in R

P composed
of 1s. Since we have assumed that all similarities are non-negative, the matrix L= D−W,
usually referred to as the ‘Laplacian matrix,’ is a positive-semidefinite matrix (Chung 1997).
In addition, its smallest eigenvalue is always zero, with eigenvector 1. Also, we have assumed
that the diagonal of W is strictly positive, which implies that D is positive-definite. Finally,
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in the next section, we also consider the normalized Laplacian matrix defined as L̃=
I− D−1/2WD−1/2. This matrix is also positive-definite with zero as its smallest eigenvalue,
associated with eigenvector D1/21.

Minimizing the normalized cut is an NP-hard problem (Meila and Xu 2003; Shi and Malik
2000). Fortunately, tractable relaxations based on eigenvalue decomposition can be found.

13.2.3 Spectral Relaxation

The following proposition, which extends a result of Shi and Malik (2000) for two clusters
to an arbitrary number of clusters, gives an alternative description of the clustering task, and
leads to a spectral relaxation.

Proposition 13.2.1 For all partitions E into R clusters, the R-way normalized cut C(W, E)
is equal to R − tr Y(D−1/2WD−1/2Y for any matrix Y ∈ R

P×R such that:
(a) the columns of D−1/2Y are piecewise constant with respect to the clusters E,
(b) Y has orthonormal columns (Y(Y= I).

Proof. The constraint (a) is equivalent to the existence of a matrix � ∈R
R×R such

that D−1/2Y= E�. The constraint (b) is thus written as I= Y(Y=�(E(DE�. The
matrix E(DE is diagonal, with elements e(r Der and is thus positive and invertible. The
R × R matrix M= (E(DE)1/2� satisfies M(M= I, i.e. M is orthogonal, which implies
I=MM( = (E(DE)1/2��((E(DE)1/2.

This immediately implies that ��( = (E(DE)−1. Thus we have

R − tr Y((D−1/2WD−1/2)Y= R − tr�(E(D1/2(D−1/2WD−1/2)D1/2E�

= R − tr�(E(WE�

= R − E(WE��( = tr E(WE(E(DE)−1

= C(W, E),

which completes the proof. �

By removing the constraint (a), we obtain a relaxed optimization problem, whose
solutions involve the eigenstructure of D−1/2WD−1/2 and which leads to the classical lower
bound on the optimal normalized cut (Chan et al. 1994; Zha et al. 2002). The following
proposition gives the solution obtained from the spectral relaxation.

Proposition 13.2.2 The maximum of tr Y(D−1/2WD−1/2Y over matrices Y ∈ R
P×R such

that Y(Y= I is the sum of the R largest eigenvalues of D−1/2WD−1/2. It is attained at
all Y of the form Y= UB1 where U ∈R

P×R is any orthonormal basis of the Rth principal
subspace of D−1/2WD−1/2 and B1 is an arbitrary orthogonal matrix in R

R×R .

Proof. Let W̃= D−1/2WD−1/2. The proposition is equivalent to the classical variational
characterization of the sum of the R largest eigenvalues λ1(W̃) ≥ · · · ≥ λR(W̃) of W̃ – a
result known as Ky Fan’s theorem (Overton and Womersley 1993):

λ1(W̃)+ · · · + λR(W̃)=max{tr Y(W̃Y, Y ∈ R
P×R, Y(Y= I},
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where the maximum is attained for all matrices Y of the form Y= UB1, where U ∈ R
P×R is

any orthonormal basis of the Rth principal subspace of W̃ and B1 is an arbitrary orthogonal
matrix in R

R×R . Note that the Rth principal subspace is uniquely defined if and only if
λR �= λR+1 (i.e. there is a positive eigengap). �

The solutions found by this relaxation will not in general be piecewise constant, i.e. they
will not in general satisfy constraint (a) in Proposition 13.2.1, and thus the relaxed solution
has to be projected back to the constraint set defined by (a), an operation we refer to as
‘rounding,’ due to the similarity with the rounding performed after a linear programming
relaxation of an integer programming problem (Bertsimas and Tsitsiklis 1997).

(Tighter relaxations that exploit the non-negativity of cluster indicators can be obtained
(Xing and Jordan 2003). These lead to convex relaxations, but their solution cannot be simply
interpreted in terms of eigenvectors).

13.2.4 Rounding

Our rounding procedure is based on the minimization of a metric between the relaxed solution
and the entire set of discrete allowed solutions. Different metrics lead to different rounding
schemes. In this section, we present two different metrics that take into account the known
invariances of the problem.

Solutions of the relaxed problem are defined up to an orthogonal matrix, i.e. Yeig = UB1,
where U ∈ R

P×R is any orthonormal basis of the Rth principal subspace of M and B1 is an
arbitrary orthogonal matrix. The set of matrices Y that correspond to a partition E and that
satisfy constraints (a) and (b) are of the form Ypart = D1/2E(E(DE)−1/2B2, where B2 is an
arbitrary orthogonal matrix.

Since both matrices are defined up to an orthogonal matrix, it makes sense to compare the
subspaces spanned by their columns. A common way to compare subspaces is to compare
the orthogonal projection operators on those subspaces (Golub and Loan 1996), that is,
to compute the Frobenius norm between YeigY(eig = UU( and the orthogonal projection

operator �0(W, E) on the subspace spanned by the columns of D1/2E= D1/2(e1, . . . , er ),
equal to:

�0(W, E)= YpartY(part

= D1/2E(E(DE)−1E(D1/2

=
∑
r

D1/2ere(r D1/2

e(r Der
.

We thus define the following cost function:

J1(W, E)= 1
2‖U(W)U(W)( −�0(W, E)‖2

F . (13.3)

Other cost functions could be derived using different metrics between linear subspaces, but
as shown in Section 13.2.5, the Frobenius norm between orthogonal projections has the
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appealing feature that it leads to a weighted K-means algorithm. Another possibility has
been followed by (Yu and Shi 2003).1

Using the fact that both U(W)U(W)( and�0(W, E) are orthogonal projection operators
on linear subspaces of dimension R, we have:

J1(W, E)= 1

2
tr U(W)U(W)( + 1

2
tr�0(W, E)�0(W, E)( − tr U(W)U(W)(�0(W, E)

= R

2
+ R

2
− tr U(W)U(W)(�0(W, E)

= R −
∑
r

e(r D1/2U(W)U(W)(D1/2er
e(r Der

.

Note that if the similarity matrix W has rank equal to R, then our cost function J1(W, E) is
exactly equal to the normalized cut C(W, E).

Alternative normalization of eigenvectors By construction of the orthonormal basis U
of the R-dimensional principal subspace of W̃= D−1/2WD−1/2, the P R-dimensional rows
u1, . . . , uP ∈ R

R are already globally normalized, i.e. they satisfy U(U=∑P
i=1 uiu(i =

I. Additional renormalization of those eigenvectors has proved worthwhile in clustering
applications (Ng et al. 2002; Scott and Longuet-Higgins 1990; Weiss 1999), as can be
seen in the idealized situation in which the similarity is zero between points that belong to
different clusters and strictly positive between points in the same clusters. In this situation, the
eigenvalue 1 has multiplicity R, and D1/2E is an orthonormal basis of the principal subspace.
Thus, any basis U of the principal subspace has rows which are located on orthogonal rays
in R

R , where the distance from the ith row ui to the origin is simply D1/2
ii . By normalizing

each row by the value D1/2
ii or by its norm ‖ui‖, the rows become orthonormal points in R

R

(in the idealized situation) and thus are trivial to cluster. Ng et al. (2002) have shown that
when the similarity matrix is ‘close’ to this idealized situation, the properly normalized rows
tightly cluster around an orthonormal basis.

Our cost function characterizes the ability of the matrix W to produce the partition E
when using its eigenvectors. Minimizing with respect to E leads to new clustering algorithms,
which we now present. Minimizing with respect to the matrix W for a given partition E leads
to algorithms for learning the similarity matrix, as we show in Section 13.3 and Section 13.4.

13.2.5 Spectral Clustering Algorithms

In this section, we provide a variational formulation of our cost function. Those variational
formulations lead naturally to K-means and weighted K-means algorithms for minimizing
this cost function with respect to the partition. While K-means is often used heuristically as
a post-processor for spectral clustering (Meila and Shi 2002; Ng et al. 2002), our approach
provides a mathematical foundation for the use of K-means.

The following theorem, inspired by the spectral relaxation of K-means presented by Zha
et al. (2002), shows that the cost function can be interpreted as a weighted distortion measure:

1Another natural possibility is to compare directly U (or a normalized version thereof) with the indicator matrix
E, up to an orthogonal matrix, which then has to be estimated. This approach leads to an alternating minimization
scheme similar to K-means.
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Input: Similarity matrix W ∈R
P×P .

Algorithm:
1. Compute first R eigenvectors U of D−1/2WD−1/2 where D= diag(W1).
2. Let U= (u1, . . . , uP )( ∈ R

P×R and dp = Dpp.
3. Initialize partition A.
4. Weighted K-means: While partition A is not stationary,

a. For all r , µr =
∑
p∈Ar d

1/2
p up/

∑
p∈Ar dp

b. For all p, assign p to Ar where r = arg minr ′ ‖upd−1/2
p − µr ′‖

Output: partition A, distortion measure
∑
r

∑
p∈Ar dp‖upd−1/2

p − µr‖2

Figure 13.2 Spectral clustering algorithm that minimizes J1(W, E) with respect to E with
weighted K-mean. See Section 13.2.5 for the initialization of the partition A.

Theorem 13.2.3 Let W be a similarity matrix and let U= (u1, . . . , uP )(, where up ∈ R
R ,

be an orthonormal basis of the Rth principal subspace of D−1/2WD−1/2, and dp = Dpp for
all p. For any partition E≡ A, we have

J1(W, E)= min
(µ1,...,µR)∈RR×R

∑
r

∑
p∈Ar

dp‖upd−1/2
p − µr‖2.

Proof. Let D(µ, A)=∑
r

∑
p∈Ar dp‖upd−1/2

p − µr‖2. Minimizing D(µ, A) with
respect to µ is a decoupled least-squares problem and we get

min
µ

D(µ, A)=
∑
r

∑
p∈Ar

u(p up −
∑
r

∥∥∥∥∑
p∈Ar

d
1/2
p up

∥∥∥∥2/(∑
p∈Ar

dp

)
=
∑
p

u(p up −
∑
r

∑
p,p′∈Ar

d
1/2
p d

1/2
p′ u(p up′/(e

(
r Der )

= R −
∑
r

e(r D1/2UU(D1/2er/(e(r Der )= J1(W, E). �

This theorem has an immediate algorithmic implication – to minimize the cost function
J1(W, E) with respect to the partition E, we can use a weighted K-means algorithm. The
resulting algorithm is presented in Figure 13.2.

The rounding procedures that we propose in this chapter are similar to those in other
spectral clustering algorithms (Ng et al. 2002; Yu and Shi 2003). Empirically, all such
rounding schemes usually lead to similar partitions. The main advantage of our procedure
– which differs from the others in being derived from a cost function – its that it naturally
leads to an algorithm for learning the similarity matrix from data, presented in Section 13.3.

Initialization TheK-means algorithm can be interpreted as a coordinate descent algorithm
and is thus subject to problems of local minima. Thus good initialization is crucial for the
practical success of the algorithm in Figure 13.2.
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A similarity matrix W is said to be perfect with respect to a partition E with R clusters if
the cost function J1(W, E) is exactly equal to zero. This is true in at least two potentially
distinct situations: (1) when the matrix W is block-constant, where the block structure
follows the partition E, and, as seen earlier, (2) when the matrix W is such that the similarity
between points in different clusters is zero, while the similarity between points in the same
clusters is strictly positive (Ng et al. 2002; Weiss 1999).

In both situations, theR cluster centroids are orthogonal vectors, and Ng et al. (2002) have
shown that when the similarity matrix is ‘close’ to the second known type of perfect matrices,
those centroids are close to orthogonal. This leads to the following natural initialization of
the partition A for the K-means algorithm in Figure 13.2 (Ng et al. 2002): select a point up
at random, and successively select R − 1 points whose directions are most orthogonal to the
previously chosen points; then assign each data point to the closest of the R chosen points.

13.2.6 Variational Formulation for the Normalized Cut

In this section, we show that there is a variational formulation of the normalized cut similar
to Theorem 13.2.3 for positive semidefinite similarity matrices, i.e. for matrices that can be
factorized as W=GG( where G ∈ R

P×M , where M � P . Indeed we have the following
theorem, whose proof is almost identical to the proof of Theorem 13.2.3.

Theorem 13.2.4 If W=GG(, where G ∈ R
P×M , then for any partition E, we have

C(W, E)= min
(µ1,...,µR)∈RR×R

∑
r

∑
p∈Ar

dp‖gpd−1
p − µr‖2 + R − tr D−1/2WD−1/2. (13.4)

This theorem shows that for positive semidefinite matrices, the normalized cut problem is
equivalent to the minimization of a weighted distortion measure. However, the dimensionality
of the space involved in the distortion measure is equal to the rank of the similarity matrices,
and thus can be very large (as large as the number of data points). Consequently, this theorem
does not lead straightforwardly to an efficient algorithm for minimizing normalized cuts,
since a weighted K-means algorithm in very high dimensions is subject to severe local
minima problems (see, e.g., Meila and Heckerman 2001). See Dhillon et al. (2004) for further
algorithms based on the equivalence between normalized cuts and weighted K-means.

13.3 Cost Functions for Learning the Similarity Matrix

Given a similarity matrix W, the steps of a spectral clustering algorithm are (1) normalization,
(2) computation of eigenvalues and (3) partitioning of the eigenvectors using (weighted)
K-means to obtain a partition E. In this section, we assume that the partition E is given,
and we develop a theoretical framework and a set of algorithms for learning a similarity
matrix W.

It is important to note that if we put no constraints on W, then there is a trivial solution,
namely any perfect similarity matrix with respect to the partition E; in particular, any matrix
that is block-constant with the appropriate blocks. For our problem to be meaningful, we
thus must consider a setting in which there are several datasets to partition and we have a
parametric form for the similarity matrix. The objective is to learn parameters that generalize
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to unseen datasets with a similar structure. We thus assume that the similarity matrix is a
function of a vector variable α ∈ R

F , and develop a method for learning α.
Given a distance between partitions, a naive algorithm would simply minimize the

distance between the true partition E and the output of the spectral clustering algorithm.
However, the K-means algorithm that is used to cluster eigenvectors is a non-continuous
map and the naive cost function would be non-continuous and thus hard to optimize. In
this section, we first show that the cost function we have presented is an upper bound on the
naive cost function; this upper bound has better differentiability properties and is amenable to
gradient-based optimization. The function that we obtain is a function of eigensubspaces and
we provide numerical algorithms to efficiently minimize such functions in Section 13.3.3.

13.3.1 Distance Between Partitions

Let E= (er )r=1,...,R and F= (fs )s=1,...,S be two partitions of P data points with R and S
clusters, represented by the indicator matrices of sizes P × R and P × S, respectively. We
use the following distance between the two partitions (Hubert and Arabie 1985):

d(E, F)= 1√
2
‖E(E(E)−1E( − F(F(F)−1F(‖

= 1√
2

∥∥∥∥∑
r

ere(r
e(r er

−
∑
s

fsf(s
f(s fs

∥∥∥∥
F

= 1√
2

(
R + S − 2

∑
r,s

(e(r fs)2

(e(r er )(f(s fs)

)1/2

. (13.5)

The term e(r fs simply counts the number of data points which belong to the rth cluster of
E and the sth cluster of F. The function d(E, F) is a distance for partitions, i.e. it is non-
negative and symmetric, it is equal to zero if and only if the partitions are equal, and it
satisfies the triangle inequality. Moreover, if F has S clusters and E has R clusters, we have
0≤ d(E, F)≤ ((R + S)/2− 1)1/2. In simulations, we compare partitions using the squared
distance.

13.3.2 Cost Functions as Upper Bounds

We let E1(W) denote the clustering obtained by minimizing the cost function J1(W, E) with
respect to E. The following theorem shows that our cost function is an upper bound on the
distance between a partition and the output of the spectral clustering algorithm.

Theorem 13.3.1 Let η(W)=maxp Dpp/minp Dpp ≥ 1. If E1(W)= arg minR J1(W, E),
then for all partitions E, we have

d(E, E1(W))2 ≤ 4η(W)J1(W, E). (13.6)

The previous theorem shows that minimizing our cost function is equivalent to minimizing
an upper bound on the true cost function. This bound is tight at zero; consequently, if we are
able to produce a similarity matrix W with small J1(W, E) cost, then the matrix will provably
lead to a partition that is close to E. Note that the bound in Equation (13.6) contains a constant
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term dependent on W and the framework can be slightly modified to take this into account
(Bach and Jordan 2006). In Section 13.3.4, we compare our cost function with previously
proposed cost functions.

13.3.3 Functions of Eigensubspaces

Our cost function, as defined in Equation (13.3), depends on theRth principal eigensubspace,
i.e. the subspace spanned by the first R eigenvectors, U ∈ R

P×R , of W̃= D−1/2WD−1/2.
In this section, we review classical properties of eigensubspaces, and present optimization
techniques to minimize functions of eigensubspaces. In this section, we focus mainly on
the cost function J1(W, E) which is defined in terms of the projections onto the principal
subspace of W̃= D−1/2WD−1/2. In this section, we first assume that all considered matrices
are positive-semidefinite, so that all eigenvalues are non-negative, postponing the treatment
of the general case to Section 13.3.3.

(a) Properties of Eigensubspaces

Let MP,R be the set of symmetric matrices such that there is a positive gap between the Rth
largest eigenvalue and the (R + 1)th largest eigenvalue. The set MP,R is open (Magnus and
Neudecker 1999), and for any matrix in MP,R , theRth principal subspaceER(M) is uniquely
defined and the orthogonal projection�R(M) on that subspace is an unique identifier of that
subspace. If UR(M) is an orthonormal basis of eigenvectors associated with the R largest
eigenvalues, we have�R(M)= UR(M)UR(M)(, and the value is independent of the choice
of the basis UR(M). Note that theRth eigensubspace is well defined even if some eigenvalues
larger than the Rth eigenvalue coalesce (in which case, the R eigenvectors are not well
defined but the Rth principal eigensubspace is).

The computation of eigenvectors and eigenvalues is a well-studied problem in numerical
linear algebra (see, e.g., Golub and Loan 1996). The two classical iterative techniques to
obtain a few eigenvalues of a symmetric matrix are the orthogonal iterations (a generalization
of the power method for one eigenvalue) and the Lanczös method.

The method of orthogonal iterations starts with a random matrix V in R
P×R , successively

multiplies V by the matrix M and orthonormalizes the result with the QR decomposition.
For almost all V, the orthogonal iterations converge to the principal eigensubspace, and the
convergence is linear with rate λR+1(M)/λR(M), where λ1(M)� · · ·� λR+1(M) are the
R + 1 largest eigenvalues of M. The complexity of performing q steps of the orthogonal
iterations is qR times the complexity of the matrix-vector product with the matrix M. If M
has no special structure, the complexity is thus O(qRP 2). As discussed in Section 13.4.4, if
special structure is present in M it is possible to reduce this to linear in P . The number of
steps to obtain a given precision depends directly on the multiplicative eigengap εR(M)=
λR+1(M)/λR(M)� 1; indeed this number of iterations is O(1/(1− εR(M))).

The Lanczös method is also an iterative method, one which makes better use of the
available information to obtain more rapid convergence. Indeed the number of iterations is
onlyO(1/(1− εR(M))1/2), i.e. the square root of the number of iterations for the orthogonal
iterations (Golub and Loan 1996). Note that it is usual to perform subspace iterations on more
than the desired number of eigenvalues in order to improve convergence (Bathe and Wilson
1976).



232 AUTOMATIC SPEECH AND SPEAKER RECOGNITION

Finally, in our setting of learning the similarity matrix, we can speed up the eigenvalue
computation by initializing the power or Lanczös method with the eigensubspace of previous
iterations. Other techniques are also available that can provide a similar speed-up by
efficiently tracking the principal subspace of slowly varying matrices (Comon and Golub
1990; Edelman et al. 1999).

(b) Approximation of Eigensubspace and its Differential

When learning the similarity matrix, the cost function and its derivatives are computed many
times and it is thus worthwhile to use an efficient approximation of the eigensubspace as
well as its differential. A very natural solution is to stop the iterative methods for computing
eigenvectors at a fixed iteration q . The following proposition shows that for the method of
power iterations, for almost all starting matrices V ∈ R

P×R , the projection obtained by early
stopping is an infinitely differentiable function:

Proposition 13.3.2 Let V ∈ R
P×R be such that η =maxu∈ER(M)⊥,v∈range(V) cos(u, v)

< 1. Then if we let Vq(M) denote the results of q orthogonal iterations, the func-
tion Vq(M)Vq(M)( is infinitely differentiable in a neighborhood of M, and we have:
‖Vq (M)Vq(M)( −�R(M)‖2 ≤ (η/(1− η2)1/2)(|λR+1(M)|/|λR(M)|)q .

Proof. Golub and Loan (1996) show that for all q , MqV always has rank R. When only
the projection on the column space is sought, the result of the orthogonal iterations does
not depend on the chosen method of orthonormalization (usually the QR decomposition),
and the final result is theoretically equivalent to orthonormalizing at the last iteration. Thus
Vq(M)Vq (M)( =MqV(V(M2qV)−1V(Mq . Vq(M)Vq (M)( is C∞ since matrix inversion
and multiplication are C∞. The bound is proved in Golub and Loan (1996) for the QR
orthogonal iterations, and since the subspaces computed by the two methods are the same,
the bound also holds here. The derivative can easily be computed using the chain rule. �

Note that numerically taking powers of matrices without care can lead to disastrous results
(Golub and Loan 1996). By using successive QR iterations, the computations can be made
stable and the same technique can be used for the computation of the derivatives.

(c) Potentially Hard Eigenvalue Problems

In most of the literature on spectral clustering, it is taken for granted that the eigenvalue
problem is easy to solve. It turns out that in many situations, the (multiplicative) eigengap
is very close to 1, making the eigenvector computation difficult (examples are given in the
following section).

When the eigengap is close to 1, a large power is necessary for the orthogonal iterations
to converge. In order to avoid those situations, we regularize the approximation of the
cost function based on the orthogonal iterations by a term which is large when the matrix
D−1/2WD−1/2 is expected to have a small eigengap, and small otherwise. We use the function
n(W)= tr W/ tr D, which is always between 0 and 1, and is equal to 1 when W is diagonal
(and thus has no eigengap).

We thus use the cost function defined as follows. Let V ∈ R
P×R be defined as D1/2F,

where the rth column of F is the indicator matrix of a random subset of the rth cluster
normalized by the number of points in that cluster. This definition of W ensures that when
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W is diagonal, the cost function is equal to R − 1, i.e. if the power iterations are likely not to
converge, then the value is the maximum possible true value of the cost.

Let B(W) be an approximate orthonormal basis of the projections on the Rth principal
subspace of D−1/2WD−1/2, based on orthogonal iterations starting from V.2

The cost function that we use to approximate J1(W, E) is

F1(W, E)= 1
2‖B(W)B(W)( −�0(W, E)‖2

F − κ log(1− n(W)). (13.7)

(d) Negative Eigenvalues

The spectral relaxation in Proposition 13.2.2 involves the largest eigenvalues of the matrix
W̃= D−1/2WD−1/2. The vector D1/21 is an eigenvector with eigenvalue 1; since we
have assumed that W is pointwise non-negative, 1 is the largest eigenvalue of W̃. Given
any symmetric matrices (not necessarily positive-semidefinite) orthogonal iterations will
converge to eigensubspaces corresponding to eigenvalues which have largest magnitude, and
it may well be the case that some negative eigenvalues of W̃ have larger magnitude than
the largest (positive) eigenvalues, thus preventing the orthogonal iterations from converging
to the desired eigenvectors. When the matrix W is positive-semidefinite this is not possible.
However, in the general case, eigenvalues have to be shifted so that they are all non-negative.
This is done by adding a multiple of the identity matrix to the matrix W̃, which does not
modify the eigenvectors but simply potentially changes the signs of the eigenvalues. In our
context adding exactly the identity matrix is sufficient to make the matrix positive; indeed,
when W is pointwise non-negative, then both D+W and D−W are diagonally dominant
with non-negative diagonal entries, and are thus positive semidefinite (Golub and Loan 1996),
which implies that −I � W̃ � I, and thus I+ W̃ is positive semidefinite.

13.3.4 Empirical Comparisons Between Cost Functions

In this section, we study the ability of the various cost functions we have proposed to track the
gold standard error measure in Equation (13.5) as we vary the parameter α in the similarity
matrix Wpp′ = exp(−α‖xp − xp′‖2). We study the cost function J1(W, E) as well as their
approximations based on the power method presented in Section 13.3.3. We also present
results for two existing approaches, one based on a Markov chain interpretation of spectral
clustering (Meila and Shi 2002) and one based on the alignment (Cristianini et al. 2002) of
D−1/2WD−1/2 and �0. Our experiment is based on the simple clustering problem shown
in Figure 13.3(a). This apparently simple toy example captures much of the core difficulty
of spectral clustering – nonlinear separability and thinness/sparsity of clusters (any point
has very few near neighbors belonging to the same cluster, so that the weighted graph is
sparse). In particular, in Figure 13.3(b) we plot the eigengap of the similarity matrix as a
function of α, noting that for all optimum values of α, this gap is very close to 1, and
thus the eigenvalue problem is hard to solve. Worse, for large values of α, the eigengap
becomes so small that the eigensolver starts to diverge. It is thus essential to prevent our
learning algorithm from yielding parameter settings that lead to a very small eigengap. In
Figure 13.3(e), we plot our approximation of the cost function based on the power method,

2The matrix D−1/2WD−1/2 always has the same largest eigenvalue 1 with eigenvector D1/21 and we could
consider instead the (R − 1)th principal subspace of D−1/2WD−1/2 −D1/211(D1/2/(1(D1).
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and we see that, even without the additional regularization presented in Section 13.3.3, our
approximate cost function avoids a very small eigengap. The regularization presented in
Section 13.3.3 strengthens this behavior.

In Figure 13.3(c) and (d), we plot the four cost functions against the gold standard. The
gold standard curve shows that the optimal α lies above 2.5 on a log scale, and as seen in
Figure 13.3(c) and (e), the minima of the new cost function and its approximation lie among
these values. As seen in Figure 13.3(d), on the other hand, the alignment and Markov-chain-
based cost functions show a poor match to the gold standard, and yield minima far from the
optimum.

The problem with the latter cost functions is that these functions essentially measure the
distance between the similarity matrix W (or a normalized version of W) and a matrix T
which (after permutation) is block-diagonal with constant blocks. Spectral clustering does
work with matrices which are close to block-constant; however, one of the strengths of
spectral clustering is its ability to work effectively with similarity matrices which are not
block-constant, and which may exhibit strong variations among each block.

Indeed, in examples such as that shown in Figure 13.3, the optimal similarity matrix is
very far from being block-diagonal with constant blocks. Rather, given that data points that
lie in the same ring are in general far apart, the blocks are very sparse – not constant and full.
Methods that try to find constant blocks cannot find the optimal matrices in these cases. In
the language of spectral graph partitioning, where we have a weighted graph with weights
W, each cluster is a connected but very sparse graph. The power Wq corresponds to the
qth power of the graph; i.e. the graph in which two vertices are linked by an edge if and
only if they are linked by a path of length no more than q in the original graph. Thus taking
powers can be interpreted as ‘thickening’ the graph to make the clusters more apparent, while
not changing the eigenstructure of the matrix (taking powers of symmetric matrices only
changes the eigenvalues, not the eigenvectors). Note that other clustering approaches based
on taking powers of similarity matrices have been studied by Tishby and Slonim (2001) and
Szummer and Jaakkola (2002); these differ from our approach in which we only take powers
to approximate the cost function used for learning the similarity matrix.

13.4 Algorithms for Learning the Similarity Matrix

We now turn to the problem of learning the similarity matrix from data. We assume that
we are given one or more sets of data for which the desired clustering is known. The goal
is to design a ‘similarity map,’ that is, a mapping from datasets of elements in X to the
space of symmetric matrices with non-negative elements. In this chapter, we assume that this
space is parameterized. In particular, we consider diagonally-scaled Gaussian kernel matrices
(for which the parameters are the scales of each dimension), as well as more complex
parameterized matrices for speech separation in Section 13.5. In general we assume that the
similarity matrix is a function of a vector variable a ∈ R

F . We also assume that the parameters
are in one-to-one correspondence with the features; setting one of these parameters to zero is
equivalent to ignoring the corresponding feature.
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Figure 13.3 Empirical comparison of cost functions. (a) Data with two clusters (crosses
and circles). (b) Eigengap of the similarity matrix as a function of α. (c) Gold standard
clustering error (solid), spectral cost function J1 (dotted). (d) Gold standard clustering error
(solid), the alignment (dashed), and a Markov-chain-based cost, divided by 20 (dotted).
(e) Approximations based on the power method, with increasing power q: 2 4 16 32.
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13.4.1 Learning Algorithm

We assume that we are given several related datasets with known partitions and our
objective is to learn parameters of similarity matrices adapted to the overall problem. This
‘supervised’ setting is not uncommon in practice. In particular, as we show in Section 13.5,
labeled datasets are readily obtained for the speech separation task by artificially combining
separately-recorded samples. Note also that in the image segmentation domain, numerous
images have been hand-labeled and a dataset of segmented natural images is available (Martin
et al. 2001).

More precisely, we assume that we are given N datasets Dn, n ∈ {1, . . . , N}, of
points in X. Each dataset Dn is composed of Pn points xnp, p ∈ {1, . . . , Pn}. Each
dataset is segmented; that is, for each n we know the partition En. For each n and
each α, we have a similarity matrix Wn(a). The cost function that we use is H(a)=
(1/N)

∑
n F (Wn(a), En)+ C∑F

f=1 |af |. The �1 penalty serves as a feature selection term,
tending to make the solution sparse. The learning algorithm is the minimization ofH(a)with
respect to a ∈ R

F , using the method of steepest descent.
Given that the complexity of the cost function increases with q , we start the minimization

with small q and gradually increase q up to its maximum value. We have observed that for
small q , the function to optimize is smoother and thus easier to optimize – in particular,
the long plateaus of constant values are less pronounced. In some cases, we may end the
optimization with a few steps of steepest descent using the cost function with the true
eigenvectors, i.e. for q =∞; this is particularly appropriate when the eigengaps of the
optimal similarity matrices happen to be small.

13.4.2 Related Work

Several other frameworks aim at learning the similarity matrices for spectral clustering or
related procedures. Closest to our own work is the algorithm of Cour et al. (2005) which
optimizes directly the eigenvectors of the similarity matrix, rather than the eigensubpaces,
and is applied to image segmentation tasks. Although differently motivated, the frameworks
of Meila and Shi (2002) and Shental et al. (2003) lead to similar convex optimization
problems. The framework of Meila and Shi (2002) directly applies to spectral clustering,
but we have shown in Section 13.3.4 that the cost function, although convex, may lead to
similarity matrices that do not perform well. The probabilistic framework of Shental et al.
(2003) is based on the model granular magnet of Blatt et al. (1997) and applies recent
graphical model approximate inference techniques to solve the intractable inference required
for the clustering task. Their framework leads to a convex maximum likelihood estimation
problem for the similarity parameters, which is based on the same approximate inference
algorithms. Among all those frameworks, ours has the advantage of providing theoretical
bounds linking the cost function and the actual performance of spectral clustering.

13.4.3 Testing Algorithm

The output of the learning algorithm is a vector a ∈R
F . In order to cluster previously

unseen datasets, we compute the similarity matrix W and use the algorithm of Figure 13.2.
In order to further enhance testing performance, we also adopt an idea due to Ng et al.
(2002) – during testing, we vary the parameter a along a direction β. That is, for small λ
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we set the parameter value to α + λβ and perform spectral clustering, selecting λ such that
the (weighted) distortion obtained after application of the spectral clustering algorithm of
Figure 13.2 is minimal.

In our situation, there are two natural choices for the direction of search. The first is to
use β = α/‖α‖, i.e. we hold fixed the direction of the parameter but allow the norm to vary.
This is natural for diagonally-scaled Gaussian kernel matrices. The second solution, which
is more generally applicable, is to use the gradient of the individual cost functions, i.e. let
gn = (dF (Wn(α), En)/dα) ∈R

F . If we neglect the effect of the regularization, at optimality,∑
n gn = 0. We take the unit-norm direction such that

∑
n(β

(gn)2 is maximum, which leads
to choosing β as the largest eigenvector of

∑
n gng(n .

13.4.4 Handling very Large Similarity Matrices

In applications to vision and speech separation problems, the number of data points to cluster
can be enormous: indeed, even a small 256× 256 image leads to more than P = 60 000
pixels while three seconds of speech sampled at 5 kHz leads to more than P = 15 000
spectrogram samples. Thus, in such applications, the full matrix W, of size P × P , cannot
be stored in main memory. In this section, we present approximation schemes for which
the storage requirements are linear in P , for which the time complexity is linear in P , and
which enable matrix-vector products to be computed in linear time. See Section 13.6.3 for an
application of each of these methods to speech separation.

For an approximation scheme to be valid, we require the approximate matrix W̃ to be
symmetric, with non-negative elements, and with a strictly positive diagonal (to ensure in
particular that D has a strictly positive diagonal). The first two techniques can be applied
generally, while the last method is specific to situations in which there is natural one-
dimensional structure, such as in speech or motion segmentation.

(a) Sparsity

In applications to vision and related problems, most of the similarities are local, and most of
the elements of the matrix W are equal to zero. IfQ≤ P(P + 1)/2 is the number of elements
less than a given threshold (note that the matrix is symmetric so just the upper triangle needs
to be stored), the storage requirement is linear in Q, as is the computational complexity of
matrix-vector products. However, assessing which elements are equal to zero might take
O(P 2). Note that when the sparsity is low, i.e. whenQ is large, using a sparse representation
is unhelpful; only when the sparsity is expected to be high is it useful to consider such an
option.

Thus, before attempting to compute all the significant elements (i.e. all elements greater
than the threshold) of the matrix, we attempt to ensure that the resulting number of elements
Q is small enough. We do so by selecting S random elements of the matrix and estimating
from those S elements the proportion of significant elements, which immediately yields an
estimate of Q.

If the estimated Q is small enough, we need to compute those Q numbers. However,
although the total number of significant elements can be efficiently estimated, the indices
of those significant elements cannot be obtained in less than O(P 2) time without additional
assumptions. A particular example is the case of diagonally-scaled Gaussian kernel matrices,
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for which the problem of computing all non-zero elements is equivalent to that of finding
pairs of data points in a Euclidean space with distance smaller than a given threshold. We can
exploit classical efficient algorithms to perform this task (Gray and Moore 2001).

If W is an element-wise product of similarity matrices, only a subset of which have a nice
structure, we can still use these techniques, albeit with the possibility of requiring more than
Q elements of the similarity matrix to be computed.

(b) Low-rank Non-negative Decomposition

If the matrix W is not sparse, we can approximate it with a low-rank matrix. Following
Fowlkes et al. (2001), it is computationally efficient to approximate each column of W by a
linear combination of a set of randomly chosen columns: if I is the set of columns that are
selected and J is the set of remaining columns, we approximate each column wj , j ∈ J , as
a combination

∑
i∈I Hijwi . In the Nyström method of Fowlkes et al. (2001), the coefficient

matrix H is chosen so that the squared error on the rows indexed by I is minimum, i.e. H
is chosen so that

∑
k∈I (wj (k)−

∑
i∈I Hijwi (k))2. Since W is symmetric, this only requires

knowledge of the columns indexed by I . The solution of this convex quadratic optimization
problem is simply H=W(I, I )−1W(I, J ), where for any sets A and B of distinct indices
W(A, B) is the (A, B) block of W. The resulting approximating matrix is symmetric and
has a rank equal to the size of I .

When the matrix W is positive-semidefinite, then the approximation remains positive-
semidefinite. However, when the matrix W is element-wise non-negative, which is the main
assumption in this chapter, then the approximation might not be and this may lead to
numerical problems when applying the techniques presented in this chapter. In particular
the approximated matrix D might not have a strictly positive diagonal. The following low-
rank non-negative decomposition has the advantage of retaining a pointwise non-negative
decomposition, while being only slightly slower. We use this decomposition in order to
approximate the large similarity matrices, and the required rank is usually in the order of
hundreds; this is to be contrasted with the approach of Ding et al. (2005), which consists in
performing a non-negative decomposition with very few factors in order to potentially obtain
directly cluster indicators.

We first find the best approximation of A=W(I, J ) as VH, where V=W(I, I ) and H
is element-wise non-negative. This can be done efficiently using algorithms for non-negative
matrix factorization (Lee and Seung 2000). Indeed, starting from a random positive H, we
perform the following iteration until convergence:

∀i, j,Hij ←
∑
k VkiAkj/(VH)kj∑

k Vki
. (13.8)

The complexity of the iteration in Equation (13.8) is O(M2P), and empirically we usually
find that we require a small number of iterations before reaching a sufficiently good solution.
Note that the iteration yields a monotonic decrease in the following divergence:

D(A||VH)=
∑
ij

(
Aij log

Aij

(VH)ij
− Aij + (VH)ij

)
.

We approximate W(J, J ) by symmetrization, i.e. W(J, I)H+H(W(I, J ). (For a direct
low-rank symmetric non-negative decomposition algorithm, see Ding et al. (2005)). In order
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Table 13.1 Performance on synthetic datasets: clustering errors (multiplied by 100) for
method without learning (but with tuning) and for our learning method with and without
tuning, with N = 1 or 10 training datasets; D is the number of irrelevant features

Learning w/o tuning Learning with tuningNo
D learning N = 1 N = 10 N = 1 N = 10

0 0 15.5 10.5 0 0
1 60.8 37.7 9.5 0 0
2 79.8 36.9 9.5 0 0
4 99.8 37.8 9.7 0.4 0
8 99.8 37 10.7 0 0

16 99.7 38.8 10.9 14 0
32 99.9 38.9 15.1 14.6 6.1

to obtain a better approximation, we ensure that the diagonal of W(J, J ) is always used with
its true (i.e. not approximated) value. Note that the matrices H found by non-negative matrix
factorization are usually sparse.

The storage requirement is O(MP), where M is the number of selected columns.
The complexity of the matrix-vector products is O(MP). Empirically, the average overall
complexity of obtaining the decomposition is O(M2P).

13.4.5 Simulations on Toy Examples

We performed simulations on synthetic datasets involving two-dimensional datasets similar
to that shown in Figure 13.3, where there are two rings whose relative distance is constant
across samples (but whose relative orientation has a random direction). We add D irrelevant
dimensions of the same magnitude as the two relevant variables. The goal is thus to learn
the diagonal scale a ∈ R

D+2 of a Gaussian kernel that leads to the best clustering on unseen
data. We learn a from N sample datasets (N = 1 or N = 10), and compute the clustering
error of our algorithm with and without adaptive tuning of the norm of a during testing (cf.
Section 13.4.3) on ten previously unseen datasets. We compare with an approach that does
not use the training data: a is taken to be the vector of all 1s and we again search over the best
possible norm during testing (we refer to this method as ‘no learning’). We report results in
Table 13.1. Without feature selection, the performance of spectral clustering degrades very
rapidly when the number of irrelevant features increases, while our learning approach is very
robust, even with only one training dataset.

13.5 Speech Separation as Spectrogram Segmentation

The problem of recovering signals from linear mixtures, with only partial knowledge of the
mixing process and the signals – a problem often referred to as blind source separation – is
a central problem in signal processing. It has applications in many fields, including speech
processing, network tomography and biomedical imaging (Hyvärinen et al. 2001). When the
problem is over-determined, i.e. when there are no more signals to estimate (the sources) than
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signals that are observed (the sensors), generic assumptions such as statistical independence
of the sources can be used in order to demix successfully (Hyvärinen et al. 2001). Many
interesting applications, however, involve under-determined problems (more sources than
sensors), where more specific assumptions must be made in order to demix. In problems
involving at least two sensors, progress has been made by appealing to sparsity assumptions
(Jourjine et al. 2000; Zibulevsky et al. 2002).

However, the most extreme case, in which there is only one sensor and two or more
sources, is a much harder and still-open problem for complex signals such as speech. In this
setting, simple generic statistical assumptions do not suffice. One approach to the problem
involves a return to the spirit of classical engineering methods such as matched filters,
and estimating specific models for specific sources – e.g. specific speakers in the case of
speech (Jang and Lee 2003; Roweis 2001). While such an approach is reasonable, it departs
significantly from the desideratum of ‘blindness.’ In this section we present an algorithm
that is a blind separation algorithm – our algorithm separates speech mixtures from a single
microphone without requiring models of specific speakers.

Our approach involves a ‘discriminative’ approach to the problem of speech separation
that is based on the spectral learning methodology presented in Section 13.4. That is, rather
than building a complex model of speech, we instead focus directly on the task of separation
and optimize parameters that determine separation performance. We work within a time–
frequency representation (a spectrogram), and exploit the sparsity of speech signals in this
representation. That is, although two speakers might speak simultaneously, there is relatively
little overlap in the time–frequency plane if the speakers are different (Jourjine et al. 2000;
Roweis 2001). We thus formulate speech separation as a problem in segmentation in the
time–frequency plane. In principle, we could appeal to classical segmentation methods
from vision (see, e.g., Shi and Malik 2000) to solve this two-dimensional segmentation
problem. Speech segments are, however, very different from visual segments, reflecting very
different underlying physics. Thus we must design features for segmenting speech from first
principles.

13.5.1 Spectrogram

The spectrogram is a two-dimensional (time and frequency) redundant representation of
a one-dimensional signal (Mallat 1998). Let f[t], t = 0, . . . , T − 1 be a signal in R

T .
The spectrogram is defined via windowed Fourier transforms and is commonly referred
to as a short-time Fourier transform or as Gabor analysis (Mallat 1998). The value
(Uf )mn of the spectrogram at time window n and frequency m is defined as (Uf)mn =
(1/
√
M)

∑T−1
t=0 f[t]w[t − na]ei2πmt/M,where w is a window of length T with small support

of length c, and M � c. We assume that the number of samples T is an integer multiple of
a and c. There are then N = T/a different windows of length c. The spectrogram is thus an
N ×M image which provides a redundant time-frequency representation of time signals3

(see Figure 13.4).

3In our simulations, the sampling frequency is f0 = 5.5 kHz and we use a Hanning window of length c = 216
(i.e. 43.2 ms). The spacing between windows is equal to a = 54 (i.e. 10.8 ms). We use a 512-point FFT (M = 512).
For a speech sample of length 4 seconds, we have T = 22 000 samples and then N = 407, which yields ≈ 2× 105

spectrogram samples.
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Figure 13.4 Spectrogram of speech (two simultaneous English speakers). The gray intensity
is proportional to the amplitude of the spectrogram.

Inversion Our speech separation framework is based on the segmentation of the spectro-
gram of a signal f[t] in R � 2 disjoint subsets Ai , i = 1, . . . , R of [0, N − 1] × [0, M − 1].
This leads to R spectrograms Ui such that (Ui )mn = Umn if (m, n) ∈Ai and zero otherwise.
We now need to find R speech signals fi[t] such that each Ui is the spectrogram of fi . In
general there are no exact solutions (because the representation is redundant), and a classical
technique is to find the minimum �2 norm approximation, i.e. find fi such that ‖Ui − Ufi‖2

is minimal (Mallat 1998). The solution of this minimization problem involves the pseudo-
inverse of the linear operator U (Mallat 1998) and is equal to fi = (U∗U)−1U∗Ui , where
U∗ is the (complex) adjoint of the linear operator U. By our choice of window (Hanning),
U∗U is proportional to the identity matrix, so that the solution to this problem can simply
be obtained by applying the adjoint operator U∗. Other techniques for spectrogram inversion
could be used (Achan et al. 2003; Griffin and Lim 1984; Mallat 1998).

13.5.2 Normalization and Subsampling

There are several ways of normalizing a speech signal. In this chapter, we chose to rescale
all speech signals as follows: for each time window n, we compute the total energy en =∑
m |Ufmn|2, and its 20-point moving average. The signals are normalized so that the 90th

percentile of those values is equal to 1.
In order to reduce the number of spectrogram samples to consider, for a given pre-

normalized speech signal, we threshold coefficients whose magnitudes are less than a value
that was chosen so that the resulting distortion is inaudible.

13.5.3 Generating Training Samples

Our approach is based on the learning algorithm presented in Section 13.4. The training
examples that we provide to this algorithm are obtained by mixing separately-normalized
speech signals. That is, given two volume-normalized speech signals, f1 and f2, of the same
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Figure 13.5 (Top) Optimal segmentation for the spectrogram of English speakers in
Figure 13.4 (right), where the two speakers are ‘black’ and ‘gray’; this segmentation is
obtained from the known separated signals. (Bottom) The blind segmentation obtained with
our algorithm.

duration, with spectrograms U1 and U2, we build a training sample as Utrain = U1 + U2, with
a segmentation given by z= arg min{U1, U2}. In order to obtain better training partitions
(and in particular to be more robust to the choice of normalization), we also search over
all α ∈ [0, 1] such that the �2 reconstruction error obtained from segmenting/reconstructing
using z= arg min{αU1, (1− α)U2} is minimized. An example of such a partition is shown
in Figure 13.5 (top).

13.5.4 Features and Grouping Cues for Speech Separation

In this section we describe our approach to the design of features for the spectral segmenta-
tion. We base our design on classical cues suggested from studies of perceptual grouping
(Cooke and Ellis 2001). Our basic representation is a ‘feature map’, a two-dimensional
representation that has the same layout as the spectrogram. Each of these cues is associated
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with a specific time scale, which we refer to as ‘small’ (less than 5 frames), ‘medium’ (10
to 20 frames), and ‘large’ (across all frames). (These scales will be of particular relevance to
the design of numerical approximation methods in Section 13.6.3.) Any given feature is not
sufficient for separating by itself; rather, it is the combination of several features that makes
our approach successful.

(a) Non-harmonic Cues

The following non-harmonic cues have counterparts in visual scenes and for these cues we
are able to borrow from feature design techniques used in image segmentation (Shi and Malik
2000).

• Continuity. Two time-frequency points are likely to belong to the same segment if they
are close in time or frequency; we thus use time and frequency directly as features. This
cue acts at a small time scale.

• Common fate cues. Elements that exhibit the same time variation are likely to belong
to the same source. This takes several particular forms. The first is simply common
offset and common onset. We thus build an offset map and an onset map, with elements
that are zero when no variation occurs, and are large when there is a sharp decrease or
increase (with respect to time) for that particular time–frequency point. The onset and
offset maps are built using oriented energy filters as used in vision (with one vertical
orientation). These are obtained by convolving the spectrogram with derivatives of
Gaussian windows (Shi and Malik 2000).

Another form of the common fate cue is frequency co-modulation, the situation in
which frequency components of a single source tend to move in sync. To capture this
cue we simply use oriented filter outputs for a set of orientation angles (eight in our
simulations). Those features act mainly at a medium time scale.

(b) Harmonic Cues

This is the major cue for voiced speech (Bregman 1990; Brown and Cooke 1994; Gold and
Morgan 1999), and it acts at all time scales (small, medium and large): voiced speech is
locally periodic and the local period is usually referred to as the pitch.

• Pitch estimation. In order to use harmonic information, we need to estimate poten-
tially several pitches. We have developed a simple pattern matching framework for
doing this that we present in Bach and Jordan (2006). If S pitches are sought, the
output that we obtain from the pitch extractor is, for each time frame n, the S pitches
ωn1, . . . , ωnS , as well as the strength ynms of the sth pitch for each frequencym.

• Timbre. The pitch extraction algorithm presented in Appendix C (Gold and Morgan
1999) also outputs the spectral envelope of the signal. This can be used to design
an additional feature related to timbre which helps integrate information regarding
speaker identification across time. Timbre can be loosely defined as the set of properties
of a voiced speech signal once the pitch has been factored out (Bregman 1990). We
add the spectral envelope as a feature (reducing its dimensionality using principal
component analysis).
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(c) Building Feature Maps from Pitch Information

We build a set of features from the pitch information. Given a time–frequency point (m, n),
let

s(m, n)= arg max
s

ynms

(
∑
m′ ynm′s )1/2

denote the highest energy pitch, and define the features

ωns(m,n), ynms(m,n),
∑
m′
ynm′s(m,n),

ynms(m,n)∑
m′ ynm′s(m,n)

and
ynms(m,n)

(
∑
m′ ynm′s(m,n))1/2

.

We use a partial normalization with the square root to avoid including very low energy
signals, while allowing a significant difference between the local amplitude of the speakers.

Those features all come with some form of energy level and all features involving
pitch values ω should take this energy into account when the similarity matrix is built in
Section 13.6. Indeed, this value has no meaning when no energy in that pitch is present.

13.6 Spectral Clustering for Speech Separation

Given the features described in the previous section, we now show how to build similarity
matrices that can be used to define a spectral segmenter. In particular, our approach builds
parameterized similarity matrices, and uses the learning algorithm presented in Section 13.4
to adjust these parameters.

13.6.1 Basis Similarity Matrices

We define a set of ‘basis similarity’ matrices for each set of cues and features defined in
Section 13.5.4. Those basis matrices are then combined as described in Section 13.6.2 and
the weights of this combination are learned as shown in Section 13.4.

For non-harmonic features, we use a radial basis function to define affinities. Thus, if
fa is the value of the feature for data point a, we use a basis similarity matrix defined as
Wab = exp(−‖fa − fb‖2). For a harmonic feature, on the other hand, we need to take into
account the strength of the feature: if fa is the value of the feature for data point a, with
strength ya , we use Wab = exp(−min{ya, yb}‖fa − fb‖2).

13.6.2 Combination of Similarity Matrices

Givenm basis matrices, we use the following parameterization of W :W=∑K
k=1 γkW

αj1
1 ×

· · · ×W
αjm
m , where the products are taken pointwise. Intuitively, if we consider the values

of similarity as soft Boolean variables, taking the product of two similarity matrices is
equivalent to considering the conjunction of two matrices, while taking the sum can be seen
as their disjunction. For our application to speech separation, we consider a sum of K = 2
matrices. This has the advantage of allowing different approximation schemes for each of the
time scales, an issue we address in the following section.
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13.6.3 Approximations of Similarity Matrices

The similarity matrices that we consider are huge, of size at least 50 000× 50 000. Thus a
significant part of our effort has involved finding computationally efficient approximations
of similarity matrices.

Let us assume that the time–frequency plane is vectorized by stacking one time frame after
the other. In this representation, the time scale of a basis similarity matrix W exerts an effect
on the degree of ‘bandedness’ of W. Recall that the matrix W is referred to as band-diagonal
with bandwidth B, if for all i, j , |i − j |� B⇒Wij = 0. On a small time scale, W has a
small bandwidth; for a medium time scale, the band is larger but still small compared with
the total size of the matrix, while for large scale effects, the matrix W has no band structure.
Note that the bandwidth B can be controlled by the coefficient of the radial basis function
involving the time feature n.

For each of these three cases, we have designed a particular way of approximating the
matrix, while ensuring that in each case the time and space requirements are linear in the
number of time frames, and thus linear in the duration of the signal to demix.

• Small scale. If the bandwidth B is very small, we use a simple direct sparse
approximation. The complexity of such an approximation grows linearly in the number
of time frames.

• Medium and large scale. We use a low-rank approximation of the matrix W, as
presented in Section 13.4.4. For mid-range interactions, we need an approximation
whose rank grows with time, but whose complexity does not grow quadratically with
time (see Section 13.4.4), while for large scale interactions, the rank is held fixed.

13.6.4 Experiments

We have trained our segmenter using data from four different male and female speakers, with
speech signals of duration 3 seconds. There were 15 parameters to estimate using our spectral
learning algorithm. For testing, we use mixes from speakers which were different from those
in the training set.

In Figure 13.5, for two English speakers from the testing set, we show an example of the
segmentation that is obtained when the two speech signals are known in advance (top panel),
a segmentation that would be used for training our spectral clustering algorithm, and in the
bottom panel, the segmentation that is output by our algorithm.

Although some components of the ‘black’ speaker are missing, the segmentation perfor-
mance is good enough to obtain audible signals of reasonable quality. The speech samples
for these examples can be downloaded from http://www.di.ens.fr/ fbach/speech/. On this web
site, there are several additional examples of speech separation, with various speakers, in
French and in English. Similarly, we present segmentation results for French speakers in
Figure 13.6. Note that the same parameters were used for both languages and that the two
languages were present in the training set. An important point is that our method does not
require knowing the speakers in advance in order to demix successfully; rather, it is only
necessary that the two speakers have distinct pitches most of the time (another, but less
crucial, condition is that one pitch is not too close to twice the other one).

A complete evaluation of the robustness of our approach is outside the scope of this
chapter; however, for the two examples shown in Figure 13.5 and Figure 13.6, we can
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Figure 13.6 (Top) Optimal segmentation for the spectrogram of French speakers in
Figure 13.4 (right), where the two speakers are ‘black’ and ‘gray’; this segmentation is
obtained from the known separated signals. (Bottom) The blind segmentation obtained with
our algorithm.

compare signal-to-noise ratios for various competing approaches. Given the true signal
s (known in our simulation experiments) and an estimated signal ŝ, the signal-to-noise
ratio (SNR) is defined as SNR= (‖s − ŝ‖2)/(‖s‖2), and is often reported in decibels, as
SNRdB =−10 log10(‖s − ŝ‖2)/(‖s‖2). In order to characterize demixing performance, we
use the maximum of the signal-to-noise ratios between the two true signals and the estimated
signals (potentially after having permuted the estimated signals). In Table 13.2, we compare
our approach (‘Clust’), with the demixing solution obtained from the segmentation that
would serve for training purposes (‘Bound’) (this can be seen as an upper bound on the
performance of our approach). We also performed two baseline experiments: (1) in order to
show that the combination of features is indeed crucial for performance, we performed K-
means clustering on the estimated pitch to separate the two signals (‘Pitch’). (2) in order to
show that a full time-frequency approach is needed, and not simply frequency-based filtering,
we used Wiener filters computed from the true signals (‘Freq’). Note that to compute the four
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Table 13.2 Comparison of signal-to-noise ratios

Bound Clust Pitch Freq

English (SNR) 2.3% 6.9% 31.1% 33.4%
English (SNRdB) 16.4 11.6 5.1 4.8

French (SNR) 3.3% 15.8% 35.4% 40.7%
French (SNRdB) 14.8 8.0 4.5 3.9

SNRs, the ‘Pitch’ and ‘Freq’ methods need the true signals, while the two other methods
(‘Clust’ and ‘Bound’) are pure separating approaches.

From the results in Table 13.2, we see that pitch alone is not sufficient for successful
demixing (see the third column in the table). This is presumably due in part to the fact that
pitch is not the only information available for grouping in the frequency domain, and in part
to the fact that multi-pitch estimation is a hard problem and multi-pitch estimation procedures
tend to lead to noisy estimates of pitch. We also see (the fourth column in the table) that a
simple frequency-based approach is not competitive. This is not surprising because natural
speech tends to occupy the whole spectrum (because of non-voiced portions and variations
in pitch).

Finally, as mentioned earlier, there was a major computational challenge in applying
spectral methods to single microphone speech separation. Using the techniques described
in Section 13.6.3, the separation algorithm has linear running time complexity and memory
requirement and, coded in Matlab and C, it takes 3 minutes to separate 4 seconds of speech
on a 2 GHz processor with 1 GB of RAM.

13.7 Conclusions

In this chapter, we have presented two sets of algorithms – one for spectral clustering and one
for learning the similarity matrix. These algorithms can be derived as the minimization of a
single cost function with respect to its two arguments. This cost function depends directly
on the eigenstructure of the similarity matrix. We have shown that it can be approximated
efficiently using the power method, yielding a method for learning similarity matrices that
can cluster effectively in cases in which non-adaptive approaches fail. Note in particular that
our new approach yields a spectral clustering method that is significantly more robust to
irrelevant features than current methods.

We applied our learning framework to the problem of one-microphone blind source
separation of speech. To do so, we have combined knowledge of physical and psychophysical
properties of speech with learning algorithms. The former provide parameterized similarity
matrices for spectral clustering, and the latter make use of our ability to generate segmented
training data. The result is an optimized segmenter for spectrograms of speech mixtures. We
have successfully demixed speech signals from two speakers using this approach.

Our work thus far has been limited to the setting of ideal acoustics and equal-strength
mixing of two speakers. There are several obvious extensions that warrant investigation. First,
the mixing conditions should be weakened and should allow some form of delay or echo.
Second, there are multiple applications where speech has to be separated from non-stationary
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noise; we believe that our method can be extended to this situation. Third, our framework is
based on segmentation of the spectrogram and, as such, distortions are inevitable since this
is a ‘lossy’ formulation (Jang and Lee 2003; Jourjine et al. 2000). We are currently working
on post-processing methods that remove some of those distortions. Finally, while the running
time and memory requirements of our algorithm are linear in the duration of the signal to be
separated, the resource requirements remain a concern. We are currently working on further
numerical techniques that we believe will bring our method significantly closer to real-time.
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